Review of LFTs, LMIs, and mu

J. Doyle, A. Packard, Kemin Zhou
{"title":"Review of LFTs, LMIs, and mu","authors":"J. Doyle, A. Packard, Kemin Zhou","doi":"10.1109/CDC.1991.261572","DOIUrl":null,"url":null,"abstract":"The authors present a tutorial overview of linear fractional transformations (LFTs) and the role of the structured singular value, mu , and linear matrix inequalities (LMIs) in solving LFT problems. The authors first introduce the notation for LFTs and briefly discuss some of their properties. They then describe mu and its connections with LFTs. They focus on two standard notions of robust stability and performance, mu stability and performance and Q stability and performance, and their relationship is discussed. Comparisons with the L/sub 1/ theory of robust performance with structured uncertainty are considered.<<ETX>>","PeriodicalId":344553,"journal":{"name":"[1991] Proceedings of the 30th IEEE Conference on Decision and Control","volume":"148 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"332","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1991] Proceedings of the 30th IEEE Conference on Decision and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.1991.261572","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 332

Abstract

The authors present a tutorial overview of linear fractional transformations (LFTs) and the role of the structured singular value, mu , and linear matrix inequalities (LMIs) in solving LFT problems. The authors first introduce the notation for LFTs and briefly discuss some of their properties. They then describe mu and its connections with LFTs. They focus on two standard notions of robust stability and performance, mu stability and performance and Q stability and performance, and their relationship is discussed. Comparisons with the L/sub 1/ theory of robust performance with structured uncertainty are considered.<>
LFTs、lmi和mu的综述
作者介绍了线性分数变换(LFTs)和结构奇异值,mu和线性矩阵不等式(lmi)在解决LFT问题中的作用的教程概述。作者首先介绍了lft的符号,并简要讨论了它们的一些性质。然后,他们描述了mu及其与lft的联系。重点讨论了鲁棒稳定性与性能的两个标准概念,即mu稳定性与性能和Q稳定性与性能,并讨论了它们之间的关系。考虑了具有结构不确定性的鲁棒性能与L/sub 1/理论的比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信