A Distributed Reinforcement Learning Yaw Control Approach for Wind Farm Energy Capture Maximization*

Paul Stanfel, K. Johnson, C. Bay, J. King
{"title":"A Distributed Reinforcement Learning Yaw Control Approach for Wind Farm Energy Capture Maximization*","authors":"Paul Stanfel, K. Johnson, C. Bay, J. King","doi":"10.23919/acc45564.2020.9147946","DOIUrl":null,"url":null,"abstract":"In this paper, we present a reinforcement-learning-based distributed approach to wind farm energy capture maximization using yaw-based wake steering. In order to maximize the power output of a wind farm, individual turbines can use yaw misalignment to deflect their wakes away from downstream turbines. Although using model-based methods to achieve yaw misalignment is one option, a model-free method might be better suited to incorporate changing conditions and uncertainty. We propose an algorithm that adapts concepts of temporal difference reinforcement learning distributed to a multiagent environment that empowers individual turbines to optimize overall wind farm output and react to unforeseen disturbances.","PeriodicalId":288450,"journal":{"name":"2020 American Control Conference (ACC)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 American Control Conference (ACC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/acc45564.2020.9147946","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

In this paper, we present a reinforcement-learning-based distributed approach to wind farm energy capture maximization using yaw-based wake steering. In order to maximize the power output of a wind farm, individual turbines can use yaw misalignment to deflect their wakes away from downstream turbines. Although using model-based methods to achieve yaw misalignment is one option, a model-free method might be better suited to incorporate changing conditions and uncertainty. We propose an algorithm that adapts concepts of temporal difference reinforcement learning distributed to a multiagent environment that empowers individual turbines to optimize overall wind farm output and react to unforeseen disturbances.
风电场能量捕获最大化的分布式强化学习偏航控制方法*
在本文中,我们提出了一种基于强化学习的分布式方法,利用基于偏航的尾流转向实现风电场能量捕获最大化。为了使风力发电场的功率输出最大化,单个涡轮机可以使用偏航失调来偏离下游涡轮机的尾迹。虽然使用基于模型的方法来实现偏航失调是一种选择,但无模型的方法可能更适合纳入不断变化的条件和不确定性。我们提出了一种算法,该算法将时间差分强化学习的概念应用于多智能体环境,使单个涡轮机能够优化整体风电场输出并对不可预见的干扰做出反应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信