Active Exploration for Unsupervised Object Categorization Based on Multimodal Hierarchical Dirichlet Process

Ryo Yoshino, Toshiaki Takano, Hiroki Tanaka, T. Taniguchi
{"title":"Active Exploration for Unsupervised Object Categorization Based on Multimodal Hierarchical Dirichlet Process","authors":"Ryo Yoshino, Toshiaki Takano, Hiroki Tanaka, T. Taniguchi","doi":"10.1109/IEEECONF49454.2021.9382781","DOIUrl":null,"url":null,"abstract":"This paper describes an effective active exploration method for multimodal object categorization using a multimodal hierarchical Dirichlet process (MHDP). MHDP is a type of multimodal latent variable models, e.g., multimodal latent Dirichlet allocation and multimodal variational autoencoder, that enables a robot to perform unsupervised multimodal object categorization on the basis of different types of sensor information. The goal of the active exploration is to reduce the number of actions executed to collect multimodal sensor information from a variety of objects to acquire knowledge on object categories. The active exploration method employing the information gain (IG) criterion for MHDP is described by extending the IG-based active perception method. Exploiting the submodular property of IG in MHDP, greedy and lazy greedy algorithms with a certain theoretical guarantee of performance are proposed. The effectiveness of the proposed method is evaluated in a robot experiment. Results show that the proposed active exploration method with the greedy algorithm works well, and it significantly reduces the step for exploration. Further, the performance of the lazy greedy algorithm is found to deteriorate at times, due to the estimation error in the IG, differently from that of active perception.","PeriodicalId":395378,"journal":{"name":"2021 IEEE/SICE International Symposium on System Integration (SII)","volume":"293 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE/SICE International Symposium on System Integration (SII)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEEECONF49454.2021.9382781","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper describes an effective active exploration method for multimodal object categorization using a multimodal hierarchical Dirichlet process (MHDP). MHDP is a type of multimodal latent variable models, e.g., multimodal latent Dirichlet allocation and multimodal variational autoencoder, that enables a robot to perform unsupervised multimodal object categorization on the basis of different types of sensor information. The goal of the active exploration is to reduce the number of actions executed to collect multimodal sensor information from a variety of objects to acquire knowledge on object categories. The active exploration method employing the information gain (IG) criterion for MHDP is described by extending the IG-based active perception method. Exploiting the submodular property of IG in MHDP, greedy and lazy greedy algorithms with a certain theoretical guarantee of performance are proposed. The effectiveness of the proposed method is evaluated in a robot experiment. Results show that the proposed active exploration method with the greedy algorithm works well, and it significantly reduces the step for exploration. Further, the performance of the lazy greedy algorithm is found to deteriorate at times, due to the estimation error in the IG, differently from that of active perception.
基于多模态层次Dirichlet过程的无监督对象分类主动探索
提出了一种利用多模态分层狄利克雷过程(MHDP)进行多模态目标分类的有效主动探索方法。MHDP是一种多模态潜变量模型,如多模态潜狄利克雷分配和多模态变分自编码器,使机器人能够根据不同类型的传感器信息进行无监督的多模态目标分类。主动探索的目标是减少从各种物体中收集多模态传感器信息以获取关于物体类别的知识所执行的动作数量。通过对基于信息增益的主动感知方法的扩展,提出了一种基于信息增益的MHDP主动探索方法。利用IG在MHDP中的子模特性,提出了具有一定性能理论保证的贪心和懒惰贪心算法。通过机器人实验验证了该方法的有效性。实验结果表明,本文提出的基于贪心算法的主动搜索方法效果良好,显著减少了搜索步骤。此外,由于IG中的估计误差,发现懒惰贪婪算法的性能有时会恶化,这与主动感知的性能不同。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信