{"title":"Joint Low Dose CT Denoising And Kidney Segmentation","authors":"M. Eslami, Solale Tabarestani, M. Adjouadi","doi":"10.1109/ISBIWorkshops50223.2020.9153392","DOIUrl":null,"url":null,"abstract":"In this research, both image denoising and kidney segmentation tasks are addressed jointly via one multitask deep convolutional network. This multitasking scheme yields better results for both tasks compared to separate single-task methods. Also, to the best of our knowledge, this is a first time attempt at addressing these joint tasks in low-dose CT scans (LDCT). This new network is a conditional generative adversarial network (C-GAN) and is an extension of the image-to-image translation network. To investigate the generalized nature of the network, two other conventional single task networks are also exploited, including the well-known 2D UNet method for segmentation and the more recently proposed method WGAN for LDCT denoising. Implementation results proved that the proposed method outperforms UNet and WGAN for both tasks.","PeriodicalId":329356,"journal":{"name":"2020 IEEE 17th International Symposium on Biomedical Imaging Workshops (ISBI Workshops)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 17th International Symposium on Biomedical Imaging Workshops (ISBI Workshops)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBIWorkshops50223.2020.9153392","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
In this research, both image denoising and kidney segmentation tasks are addressed jointly via one multitask deep convolutional network. This multitasking scheme yields better results for both tasks compared to separate single-task methods. Also, to the best of our knowledge, this is a first time attempt at addressing these joint tasks in low-dose CT scans (LDCT). This new network is a conditional generative adversarial network (C-GAN) and is an extension of the image-to-image translation network. To investigate the generalized nature of the network, two other conventional single task networks are also exploited, including the well-known 2D UNet method for segmentation and the more recently proposed method WGAN for LDCT denoising. Implementation results proved that the proposed method outperforms UNet and WGAN for both tasks.