A Study of Genetic Algorithm Parameterization via a Benchmark of Test Functions

E. Asmae, Hafidi Sanae, Benhala Bachir
{"title":"A Study of Genetic Algorithm Parameterization via a Benchmark of Test Functions","authors":"E. Asmae, Hafidi Sanae, Benhala Bachir","doi":"10.1109/IRASET57153.2023.10152983","DOIUrl":null,"url":null,"abstract":"This paper presents a study to properly parameterize the Genetic Algorithm (GA) in a way to increase its performance. Parameterization is a crucial phase before any use for problem solving. An analysis of the influence of the main parameters of GA on the quality of solutions found has been shown. The parameters taken into consideration are the population size, the type of selection, the type of crossover and the mutation rate. A set of mathematical functions (unimodal and multimodal) whose global minimum is known in advance is used for this purpose.","PeriodicalId":228989,"journal":{"name":"2023 3rd International Conference on Innovative Research in Applied Science, Engineering and Technology (IRASET)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 3rd International Conference on Innovative Research in Applied Science, Engineering and Technology (IRASET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRASET57153.2023.10152983","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a study to properly parameterize the Genetic Algorithm (GA) in a way to increase its performance. Parameterization is a crucial phase before any use for problem solving. An analysis of the influence of the main parameters of GA on the quality of solutions found has been shown. The parameters taken into consideration are the population size, the type of selection, the type of crossover and the mutation rate. A set of mathematical functions (unimodal and multimodal) whose global minimum is known in advance is used for this purpose.
基于测试函数基准的遗传算法参数化研究
本文研究了适当地参数化遗传算法,以提高遗传算法的性能。参数化是解决问题之前的关键阶段。分析了遗传算法的主要参数对解质量的影响。所考虑的参数有种群大小、选择类型、交叉类型和突变率。一组数学函数(单峰和多峰),其全局最小值是事先已知的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信