{"title":"Eigensteps: A giant leap for gait recognition","authors":"Patrick A. H. Bours, R. Shrestha","doi":"10.1109/IWSCN.2010.5497991","DOIUrl":null,"url":null,"abstract":"In this paper we will show that using Principle Component Analysis (PCA) on accelerometer based gait data will give a large improvement on the performance. On a dataset of 720 gait samples (60 volunteers and 12 gait samples per volunteer) we achieved an EER of 1.6% while the best result so far, using the Average Cycle Method (ACM), gave a result of nearly 6%. This tremendous increase makes gait recognition a viable method in commercial applications in the near future.","PeriodicalId":217163,"journal":{"name":"2010 2nd International Workshop on Security and Communication Networks (IWSCN)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"42","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 2nd International Workshop on Security and Communication Networks (IWSCN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWSCN.2010.5497991","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 42
Abstract
In this paper we will show that using Principle Component Analysis (PCA) on accelerometer based gait data will give a large improvement on the performance. On a dataset of 720 gait samples (60 volunteers and 12 gait samples per volunteer) we achieved an EER of 1.6% while the best result so far, using the Average Cycle Method (ACM), gave a result of nearly 6%. This tremendous increase makes gait recognition a viable method in commercial applications in the near future.