Wavelength-adaptive image formation model and geometric classification for defogging unmanned aerial vehicle images

Inhye Yoon, M. Hayes, J. Paik
{"title":"Wavelength-adaptive image formation model and geometric classification for defogging unmanned aerial vehicle images","authors":"Inhye Yoon, M. Hayes, J. Paik","doi":"10.1109/ICASSP.2013.6638096","DOIUrl":null,"url":null,"abstract":"In this paper, we present an image enhancement algorithm based on the wavelength-adaptive image formation model and geometric classification for defogging UAV images. We first generate a labeled image using geometric class-based segmentation. We then generate a modified transmission map based on the wavelength-adaptive image formation model with scattering coefficients in the labeled image. We also estimate the atmospheric light from the modified transmission map instead of simply choosing the brightest pixel. The proposed method can significantly enhance the visibility of foggy UAV images compared with existing monochrome model-based defogging method. The proposed algorithm can enhance the visibility by removing atmospheric degradation factor in airborne images acquired by aerial platforms such as satellite, airplane, and UAV under critical weather conditions such as haze, fog, and smoke.","PeriodicalId":183968,"journal":{"name":"2013 IEEE International Conference on Acoustics, Speech and Signal Processing","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Acoustics, Speech and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2013.6638096","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In this paper, we present an image enhancement algorithm based on the wavelength-adaptive image formation model and geometric classification for defogging UAV images. We first generate a labeled image using geometric class-based segmentation. We then generate a modified transmission map based on the wavelength-adaptive image formation model with scattering coefficients in the labeled image. We also estimate the atmospheric light from the modified transmission map instead of simply choosing the brightest pixel. The proposed method can significantly enhance the visibility of foggy UAV images compared with existing monochrome model-based defogging method. The proposed algorithm can enhance the visibility by removing atmospheric degradation factor in airborne images acquired by aerial platforms such as satellite, airplane, and UAV under critical weather conditions such as haze, fog, and smoke.
波长自适应图像形成模型及无人机图像去雾几何分类
本文提出了一种基于波长自适应图像形成模型和几何分类的无人机图像去雾增强算法。我们首先使用基于几何分类的分割生成标记图像。然后,基于波长自适应图像形成模型,利用标记图像中的散射系数生成改进的透射图。我们还从修改后的透射图中估计大气光,而不是简单地选择最亮的像素。与现有的基于单色模型的去雾方法相比,该方法可以显著提高无人机雾天图像的可见度。该算法通过去除卫星、飞机、无人机等航空平台在雾霾、雾霾、烟雾等恶劣天气条件下获取的机载图像中的大气退化因子,提高能见度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信