User Modeling for a Personal Assistant

R. Guha, Vineet Gupta, V. Raghunathan, R. Srikant
{"title":"User Modeling for a Personal Assistant","authors":"R. Guha, Vineet Gupta, V. Raghunathan, R. Srikant","doi":"10.1145/2684822.2685309","DOIUrl":null,"url":null,"abstract":"We present a user modeling system that serves as the foundation of a personal assistant. The system ingests web search history for signed-in users, and identifies coherent contexts that correspond to tasks, interests, and habits. Unlike past work which focused on either in-session tasks or tasks over a few days, we look at several months of history in order to identify not just short-term tasks, but also long-term interests and habits. The features we use for identifying coherent contexts yield substantially higher precision and recall than past work. We also present an algorithm for identifying contexts that is 8 to 30 times faster than previous algorithms. The user modeling system has been deployed in production. It runs over hundreds of millions of users, and updates the models with a 10-minute latency. The contexts identified by the system serve as the foundation for generating recommendations in Google Now.","PeriodicalId":179443,"journal":{"name":"Proceedings of the Eighth ACM International Conference on Web Search and Data Mining","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"69","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Eighth ACM International Conference on Web Search and Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2684822.2685309","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 69

Abstract

We present a user modeling system that serves as the foundation of a personal assistant. The system ingests web search history for signed-in users, and identifies coherent contexts that correspond to tasks, interests, and habits. Unlike past work which focused on either in-session tasks or tasks over a few days, we look at several months of history in order to identify not just short-term tasks, but also long-term interests and habits. The features we use for identifying coherent contexts yield substantially higher precision and recall than past work. We also present an algorithm for identifying contexts that is 8 to 30 times faster than previous algorithms. The user modeling system has been deployed in production. It runs over hundreds of millions of users, and updates the models with a 10-minute latency. The contexts identified by the system serve as the foundation for generating recommendations in Google Now.
个人助理的用户建模
我们提出了一个用户建模系统,作为个人助理的基础。系统获取登录用户的网络搜索历史,并识别与任务、兴趣和习惯相对应的连贯上下文。与过去的研究不同,我们着眼于几个月的历史,不仅是为了确定短期任务,还为了确定长期的兴趣和习惯。我们用于识别连贯上下文的特征比过去的工作产生了更高的精度和召回率。我们还提出了一种识别上下文的算法,比以前的算法快8到30倍。用户建模系统已经部署到生产环境中。它拥有数以亿计的用户,更新模型的延迟只有10分钟。系统识别的上下文作为Google Now生成推荐的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信