A novel compressed sensing DOA estimation using difference set codes

Iman Taghavi, M. Sabahi, F. Parvaresh, M. Mivehchy
{"title":"A novel compressed sensing DOA estimation using difference set codes","authors":"Iman Taghavi, M. Sabahi, F. Parvaresh, M. Mivehchy","doi":"10.1109/SPIS.2015.7422330","DOIUrl":null,"url":null,"abstract":"In this paper, we address the problem of direction-of-arrival (DOA) estimation using a novel spatial sampling scheme based on difference set (DS) codes, called DS-spatial sampling. It is shown that the proposed DS-spatial sampling scheme can be modeled by a deterministic dictionary with minimum coherence. We also develop a low complexity compressed sensing (CS) model for DOA estimation. The proposed methods can reduce the number of array elements as well as the number of receivers. Compared with the conventional DOA estimation algorithm, the proposed sampling and processing method can achieve significantly higher resolution.","PeriodicalId":424434,"journal":{"name":"2015 Signal Processing and Intelligent Systems Conference (SPIS)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Signal Processing and Intelligent Systems Conference (SPIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPIS.2015.7422330","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we address the problem of direction-of-arrival (DOA) estimation using a novel spatial sampling scheme based on difference set (DS) codes, called DS-spatial sampling. It is shown that the proposed DS-spatial sampling scheme can be modeled by a deterministic dictionary with minimum coherence. We also develop a low complexity compressed sensing (CS) model for DOA estimation. The proposed methods can reduce the number of array elements as well as the number of receivers. Compared with the conventional DOA estimation algorithm, the proposed sampling and processing method can achieve significantly higher resolution.
一种基于差分集码的压缩感知DOA估计方法
在本文中,我们使用一种新的基于差分集(DS)编码的空间采样方案来解决到达方向(DOA)估计问题,称为DS-空间采样。结果表明,所提出的ds空间采样方案可以用具有最小相干性的确定性字典来建模。我们还开发了一种用于DOA估计的低复杂度压缩感知(CS)模型。所提出的方法可以减少阵列元素的数量和接收器的数量。与传统的DOA估计算法相比,所提出的采样处理方法可以获得更高的分辨率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信