Nonlinear prediction of speech signals using memory neuron networks

P. Poddar, K. Unnikrishnan
{"title":"Nonlinear prediction of speech signals using memory neuron networks","authors":"P. Poddar, K. Unnikrishnan","doi":"10.1109/NNSP.1991.239502","DOIUrl":null,"url":null,"abstract":"The authors present a feed-forward neural network architecture that can be used for nonlinear autoregressive prediction of multivariate time-series. It uses specialized neurons (called memory neurons) to store past activations of the network in an efficient fashion. The network learns to be a nonlinear predictor of the appropriate order to model temporal waveforms of speech signals. Arrays of such networks can be used to build real-time classifiers of speech sounds. Experiments where memory-neuron networks are trained to predict speech waveforms and sequences of spectral frames are described. Performance of the network for prediction of time-series with minimal a priori assumptions of its statistical properties is shown to be better than linear autoregressive models.<<ETX>>","PeriodicalId":354832,"journal":{"name":"Neural Networks for Signal Processing Proceedings of the 1991 IEEE Workshop","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"36","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Networks for Signal Processing Proceedings of the 1991 IEEE Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NNSP.1991.239502","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 36

Abstract

The authors present a feed-forward neural network architecture that can be used for nonlinear autoregressive prediction of multivariate time-series. It uses specialized neurons (called memory neurons) to store past activations of the network in an efficient fashion. The network learns to be a nonlinear predictor of the appropriate order to model temporal waveforms of speech signals. Arrays of such networks can be used to build real-time classifiers of speech sounds. Experiments where memory-neuron networks are trained to predict speech waveforms and sequences of spectral frames are described. Performance of the network for prediction of time-series with minimal a priori assumptions of its statistical properties is shown to be better than linear autoregressive models.<>
基于记忆神经元网络的语音信号非线性预测
提出了一种可用于多元时间序列非线性自回归预测的前馈神经网络结构。它使用专门的神经元(称为记忆神经元)以有效的方式存储网络过去的激活。网络学习成为一个适当阶数的非线性预测器来模拟语音信号的时间波形。这样的网络阵列可以用来建立语音的实时分类器。描述了训练记忆神经元网络来预测语音波形和频谱帧序列的实验。在对时间序列的统计性质进行最小先验假设的情况下,该网络的预测性能优于线性自回归模型
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信