Urban Planter: A Web App for Automatic Classification of Urban Plants

Sarit Divekar, Irina Rabaev, Marina Litvak
{"title":"Urban Planter: A Web App for Automatic Classification of Urban Plants","authors":"Sarit Divekar, Irina Rabaev, Marina Litvak","doi":"10.1109/VCIP53242.2021.9675318","DOIUrl":null,"url":null,"abstract":"Plant classification requires an expert because subtle differences in leaves or petal forms might differentiate between different species. On the contrary, some species are characterized by high variability in appearance. This paper introduces a web app for assisting people in identifying plants for discovering the best growing methods. The uploaded picture is submitted to the back-end server, and a pre-trained neural network classifies it to one of the predefined classes. The classification label and confidence are displayed to the end user on the front-end page. The application focuses on the house and garden plant species that can be grown mainly in a desert climate and are not covered by existing datasets. For training a model, we collected the Urban Planter dataset. The installation code of the alpha version and the demo video of the app can be found on https://github.com/UrbanPlanter/urbanplanterapp.","PeriodicalId":114062,"journal":{"name":"2021 International Conference on Visual Communications and Image Processing (VCIP)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Visual Communications and Image Processing (VCIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VCIP53242.2021.9675318","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Plant classification requires an expert because subtle differences in leaves or petal forms might differentiate between different species. On the contrary, some species are characterized by high variability in appearance. This paper introduces a web app for assisting people in identifying plants for discovering the best growing methods. The uploaded picture is submitted to the back-end server, and a pre-trained neural network classifies it to one of the predefined classes. The classification label and confidence are displayed to the end user on the front-end page. The application focuses on the house and garden plant species that can be grown mainly in a desert climate and are not covered by existing datasets. For training a model, we collected the Urban Planter dataset. The installation code of the alpha version and the demo video of the app can be found on https://github.com/UrbanPlanter/urbanplanterapp.
城市植物:一个用于城市植物自动分类的Web应用程序
植物分类需要专家,因为叶子或花瓣形态的细微差异可能会区分不同的物种。相反,有些物种的特征是在外观上有很大的变异性。本文介绍了一个帮助人们识别植物以发现最佳种植方法的web应用程序。上传的图片被提交到后端服务器,一个预训练的神经网络将其分类到一个预定义的类中。分类标签和置信度在前端页面显示给最终用户。该应用程序侧重于主要在沙漠气候中生长的房屋和花园植物物种,这些物种未被现有数据集覆盖。为了训练模型,我们收集了Urban Planter数据集。alpha版本的安装代码和演示视频可以在https://github.com/UrbanPlanter/urbanplanterapp上找到。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信