Compliance-Based Latchable Microfluidic Actuators Using a Paraffin Wax

Bozhi Yang, Q. Lin
{"title":"Compliance-Based Latchable Microfluidic Actuators Using a Paraffin Wax","authors":"Bozhi Yang, Q. Lin","doi":"10.1109/MEMSYS.2006.1627905","DOIUrl":null,"url":null,"abstract":"This paper presents a novel phase-change actuator that can be potentially used for microvalves in lab-on-a-chip systems where minimal energy consumption is required. The actuator exploits a low melting-point paraffin wax, whose solid-liquid phase changes allow the closing and opening of fluid flow through deformable microchannels. Flow switching is initiated by melting of paraffin using integrated heaters, with an additional pneumatic pressure used for flow switching from open to closed state. After paraffin solidifies the switched flow state is subsequently maintained without further energy consumption. The actuator can be fabricated from PDMS through the multilayer soft lithography technique. Experiments demonstrate that the actuators can switch the flow state within 4-8 seconds, which can be further sped up with improved heater designs.","PeriodicalId":250831,"journal":{"name":"19th IEEE International Conference on Micro Electro Mechanical Systems","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"19th IEEE International Conference on Micro Electro Mechanical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MEMSYS.2006.1627905","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper presents a novel phase-change actuator that can be potentially used for microvalves in lab-on-a-chip systems where minimal energy consumption is required. The actuator exploits a low melting-point paraffin wax, whose solid-liquid phase changes allow the closing and opening of fluid flow through deformable microchannels. Flow switching is initiated by melting of paraffin using integrated heaters, with an additional pneumatic pressure used for flow switching from open to closed state. After paraffin solidifies the switched flow state is subsequently maintained without further energy consumption. The actuator can be fabricated from PDMS through the multilayer soft lithography technique. Experiments demonstrate that the actuators can switch the flow state within 4-8 seconds, which can be further sped up with improved heater designs.
使用石蜡的基于顺应性的可闭锁微流控驱动器
本文提出了一种新的相变执行器,可以潜在地用于芯片上实验室系统中的微阀,其中需要最小的能量消耗。执行器利用低熔点石蜡,其固液相变化允许流体通过可变形的微通道关闭和打开。流量切换是通过使用集成加热器熔化石蜡开始的,使用额外的气动压力将流量从打开状态切换到关闭状态。石蜡固化后,切换流动状态随后保持,无需进一步消耗能量。该驱动器可通过多层软光刻技术由PDMS制成。实验表明,执行器可以在4 ~ 8秒内切换流量状态,通过改进加热器设计可以进一步加快切换速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信