Relevance feedback for semantic classification: A comparative study

Tugrul K. Ates, Savas Ozkan, M. Soysal, Aydin Alatan
{"title":"Relevance feedback for semantic classification: A comparative study","authors":"Tugrul K. Ates, Savas Ozkan, M. Soysal, Aydin Alatan","doi":"10.1109/SIU.2011.5929823","DOIUrl":null,"url":null,"abstract":"Immense increase in the number of multimedia content accessible from television and internet with the help developing technologies reveals efficient supervision and classification of such content as a problem. Relevance feedback is a technique which relies on evaluation of retrieval results by humans and enables reduce the semantic gap between ideas and low level representations. Content based high level classification system may employ relevance feedback for improved retrieval performance. In this paper, different relevance feedback algorithms, which can be utilized to increase generalized semantic classification performance, are discussed and compared inside an experimental framework. Some improvements are also proposed over obtained results.","PeriodicalId":114797,"journal":{"name":"2011 IEEE 19th Signal Processing and Communications Applications Conference (SIU)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 19th Signal Processing and Communications Applications Conference (SIU)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIU.2011.5929823","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Immense increase in the number of multimedia content accessible from television and internet with the help developing technologies reveals efficient supervision and classification of such content as a problem. Relevance feedback is a technique which relies on evaluation of retrieval results by humans and enables reduce the semantic gap between ideas and low level representations. Content based high level classification system may employ relevance feedback for improved retrieval performance. In this paper, different relevance feedback algorithms, which can be utilized to increase generalized semantic classification performance, are discussed and compared inside an experimental framework. Some improvements are also proposed over obtained results.
语义分类相关反馈的比较研究
在技术发展的帮助下,从电视和互联网上可获取的多媒体内容数量急剧增加,这表明对这些内容的有效监督和分类是一个问题。关联反馈是一种依赖于人类对检索结果进行评价的技术,它能够减少思想与低层次表示之间的语义差距。基于内容的高级分类系统可以采用相关反馈来提高检索性能。本文在实验框架内对不同的相关反馈算法进行了讨论和比较,以提高广义语义分类的性能。并对所得结果提出了改进意见。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信