Tugrul K. Ates, Savas Ozkan, M. Soysal, Aydin Alatan
{"title":"Relevance feedback for semantic classification: A comparative study","authors":"Tugrul K. Ates, Savas Ozkan, M. Soysal, Aydin Alatan","doi":"10.1109/SIU.2011.5929823","DOIUrl":null,"url":null,"abstract":"Immense increase in the number of multimedia content accessible from television and internet with the help developing technologies reveals efficient supervision and classification of such content as a problem. Relevance feedback is a technique which relies on evaluation of retrieval results by humans and enables reduce the semantic gap between ideas and low level representations. Content based high level classification system may employ relevance feedback for improved retrieval performance. In this paper, different relevance feedback algorithms, which can be utilized to increase generalized semantic classification performance, are discussed and compared inside an experimental framework. Some improvements are also proposed over obtained results.","PeriodicalId":114797,"journal":{"name":"2011 IEEE 19th Signal Processing and Communications Applications Conference (SIU)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 19th Signal Processing and Communications Applications Conference (SIU)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIU.2011.5929823","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Immense increase in the number of multimedia content accessible from television and internet with the help developing technologies reveals efficient supervision and classification of such content as a problem. Relevance feedback is a technique which relies on evaluation of retrieval results by humans and enables reduce the semantic gap between ideas and low level representations. Content based high level classification system may employ relevance feedback for improved retrieval performance. In this paper, different relevance feedback algorithms, which can be utilized to increase generalized semantic classification performance, are discussed and compared inside an experimental framework. Some improvements are also proposed over obtained results.