The use of version space controlled genetic algorithms to solve the Boole problem

R. Reynolds, Jonathan I. Maletic
{"title":"The use of version space controlled genetic algorithms to solve the Boole problem","authors":"R. Reynolds, Jonathan I. Maletic","doi":"10.1109/TAI.1991.167071","DOIUrl":null,"url":null,"abstract":"It is demonstrated that the VGA (version space guided genetic algorithm) is a particular instantiation of a more general class of systems, termed autonomous learning elements (ALEs). The basic components of an ALEs are discussed. The Boole problem posed by S. W. Wilson (1987) is introduced, and its expression in terms of the VGA framework is discussed. The details of the VGA system are given followed by a discussion of results. In particular, the performances of the VGA on two versions of the Boole problem are described and compared with those of classifier systems and decision trees.<<ETX>>","PeriodicalId":371778,"journal":{"name":"[Proceedings] Third International Conference on Tools for Artificial Intelligence - TAI 91","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"[Proceedings] Third International Conference on Tools for Artificial Intelligence - TAI 91","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TAI.1991.167071","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

It is demonstrated that the VGA (version space guided genetic algorithm) is a particular instantiation of a more general class of systems, termed autonomous learning elements (ALEs). The basic components of an ALEs are discussed. The Boole problem posed by S. W. Wilson (1987) is introduced, and its expression in terms of the VGA framework is discussed. The details of the VGA system are given followed by a discussion of results. In particular, the performances of the VGA on two versions of the Boole problem are described and compared with those of classifier systems and decision trees.<>
利用版本空间控制遗传算法解决布尔问题
它证明了VGA(版本空间引导遗传算法)是一个更一般的系统类别的特定实例,称为自主学习元素(ALEs)。讨论了ALEs的基本组成部分。介绍了S. W. Wilson(1987)提出的布尔问题,并讨论了其在VGA框架中的表达。给出了VGA系统的细节,并对结果进行了讨论。特别地,描述了VGA在两个版本的布尔问题上的性能,并与分类器系统和决策树的性能进行了比较
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信