DBSCAN-R: A Machine Learning Approach for Routing in Opportunistic Networks

Rohan Pillai, Rashmi Rao, Ch Rajendra prasad, Apoorva Rao Iragavarapu, Annapurna D
{"title":"DBSCAN-R: A Machine Learning Approach for Routing in Opportunistic Networks","authors":"Rohan Pillai, Rashmi Rao, Ch Rajendra prasad, Apoorva Rao Iragavarapu, Annapurna D","doi":"10.1109/CONECCT55679.2022.9865751","DOIUrl":null,"url":null,"abstract":"Opportunistic networks(OppNets) are a subset of mobile IoT networks in which no direct connection can be established between a message’s source and its destination node. Instead, routing occurs through a collection of intermediate mobile nodes. The lack of a direct connection, along with the mobile nature of the nodes makes routing in OppNets a challenge. This paper aims to utilize machine learning to automate the routing process in Opportunistic networks. The proposed model is a context-aware protocol called DBSCAN-R. DBSCAN-R utilizes DBSCAN(Density-Based Clustering of Application with Noise), an unsupervised soft clustering algorithm to make routing choices. Four dynamic network parameters are chosen to use as features for clustering in DBSCAN. DBSCAN-R outperforms 3 benchmark algorithms i.e Epidemic routing, ProPHET routing, and MaxProp routing when comparing the delivery success rate, average hop count, overhead ratio, and messages dropped.","PeriodicalId":380005,"journal":{"name":"2022 IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT)","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CONECCT55679.2022.9865751","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Opportunistic networks(OppNets) are a subset of mobile IoT networks in which no direct connection can be established between a message’s source and its destination node. Instead, routing occurs through a collection of intermediate mobile nodes. The lack of a direct connection, along with the mobile nature of the nodes makes routing in OppNets a challenge. This paper aims to utilize machine learning to automate the routing process in Opportunistic networks. The proposed model is a context-aware protocol called DBSCAN-R. DBSCAN-R utilizes DBSCAN(Density-Based Clustering of Application with Noise), an unsupervised soft clustering algorithm to make routing choices. Four dynamic network parameters are chosen to use as features for clustering in DBSCAN. DBSCAN-R outperforms 3 benchmark algorithms i.e Epidemic routing, ProPHET routing, and MaxProp routing when comparing the delivery success rate, average hop count, overhead ratio, and messages dropped.
DBSCAN-R:机会网络中路由的机器学习方法
机会网络(OppNets)是移动物联网网络的一个子集,在该网络中,消息的源节点和目标节点之间不能建立直接连接。相反,路由是通过一组中间移动节点进行的。缺乏直接连接以及节点的移动性使得OppNets中的路由成为一项挑战。本文旨在利用机器学习实现机会主义网络中路由过程的自动化。所提出的模型是一个名为DBSCAN-R的上下文感知协议。DBSCAN- r利用无监督软聚类算法DBSCAN(Density-Based Clustering of Application with Noise)进行路由选择。选择了四个动态网络参数作为DBSCAN中聚类的特征。在比较传递成功率、平均跳数、开销比和丢弃的消息时,DBSCAN-R优于3种基准算法,即Epidemic路由、ProPHET路由和MaxProp路由。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信