Identifying spam in the iOS app store

Rishi Chandy, Haijie Gu
{"title":"Identifying spam in the iOS app store","authors":"Rishi Chandy, Haijie Gu","doi":"10.1145/2184305.2184317","DOIUrl":null,"url":null,"abstract":"Popular apps on the Apple iOS App Store can generate millions of dollars in profit and collect valuable personal user information. Fraudulent reviews could deceive users into downloading potentially harmful spam apps or unfairly ignoring apps that are victims of review spam. Thus, automatically identifying spam in the App Store is an important problem. This paper aims to introduce and characterize novel datasets acquired through crawling the iOS App Store, compare a baseline Decision Tree model with a novel Latent Class graphical model for classification of app spam, and analyze preliminary results for clustering reviews.","PeriodicalId":230983,"journal":{"name":"WebQuality '12","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"71","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"WebQuality '12","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2184305.2184317","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 71

Abstract

Popular apps on the Apple iOS App Store can generate millions of dollars in profit and collect valuable personal user information. Fraudulent reviews could deceive users into downloading potentially harmful spam apps or unfairly ignoring apps that are victims of review spam. Thus, automatically identifying spam in the App Store is an important problem. This paper aims to introduce and characterize novel datasets acquired through crawling the iOS App Store, compare a baseline Decision Tree model with a novel Latent Class graphical model for classification of app spam, and analyze preliminary results for clustering reviews.
识别iOS应用商店中的垃圾邮件
苹果iOS应用程序商店的热门应用程序可以产生数百万美元的利润,并收集宝贵的个人用户信息。欺诈性评论可能会欺骗用户下载潜在有害的垃圾应用,或者不公平地忽略那些受到垃圾评论影响的应用。因此,自动识别App Store中的垃圾邮件是一个重要问题。本文旨在介绍和描述通过抓取iOS App Store获得的新数据集,比较基线决策树模型和用于分类垃圾应用的新型Latent Class图形模型,并分析聚类评论的初步结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信