Sequential Recommendation with Dual Learning

Chenliang Zhang, Lingfeng Shi
{"title":"Sequential Recommendation with Dual Learning","authors":"Chenliang Zhang, Lingfeng Shi","doi":"10.1109/ICTAI56018.2022.00017","DOIUrl":null,"url":null,"abstract":"Sequential recommendation, which aims to leverage users' historical behaviors to predict their next interaction, has become a research hotspot in the field of recommendation. Time is one of the important contextual information for interaction. However, most previous works only use time information as a model feature or time prediction as an auxiliary task and ignore the duality between sequential recommendation task and time prediction task. Compared with the method of sharing parameters in multi-task learning, this paper proposed a dual learning framework to jointly model two tasks and incorporate the probabilistic dual properties between them in the training stage. In addition, we design an appropriate base model for each task. Finally, experiments on two public datasets demonstrated the effectiveness of the proposed dual learning framework in sequential recommendation scenarios.","PeriodicalId":354314,"journal":{"name":"2022 IEEE 34th International Conference on Tools with Artificial Intelligence (ICTAI)","volume":"407 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 34th International Conference on Tools with Artificial Intelligence (ICTAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTAI56018.2022.00017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Sequential recommendation, which aims to leverage users' historical behaviors to predict their next interaction, has become a research hotspot in the field of recommendation. Time is one of the important contextual information for interaction. However, most previous works only use time information as a model feature or time prediction as an auxiliary task and ignore the duality between sequential recommendation task and time prediction task. Compared with the method of sharing parameters in multi-task learning, this paper proposed a dual learning framework to jointly model two tasks and incorporate the probabilistic dual properties between them in the training stage. In addition, we design an appropriate base model for each task. Finally, experiments on two public datasets demonstrated the effectiveness of the proposed dual learning framework in sequential recommendation scenarios.
顺序推荐与双重学习
序贯推荐,旨在利用用户的历史行为来预测其下一次交互行为,已成为推荐领域的研究热点。时间是互动的重要语境信息之一。然而,以往的研究大多只将时间信息作为模型特征或将时间预测作为辅助任务,而忽略了顺序推荐任务与时间预测任务的对偶性。与多任务学习中的参数共享方法相比,本文提出了一种对偶学习框架,对两个任务进行联合建模,并在训练阶段将它们之间的概率对偶性质纳入其中。此外,我们为每个任务设计了合适的基本模型。最后,在两个公共数据集上的实验证明了所提出的双学习框架在顺序推荐场景中的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信