Learning Multi-Label Aerial Image Classification Under Label Noise: A Regularization Approach Using Word Embeddings

Yuansheng Hua, Sylvain Lobry, Lichao Mou, D. Tuia, Xiaoxiang Zhu
{"title":"Learning Multi-Label Aerial Image Classification Under Label Noise: A Regularization Approach Using Word Embeddings","authors":"Yuansheng Hua, Sylvain Lobry, Lichao Mou, D. Tuia, Xiaoxiang Zhu","doi":"10.1109/IGARSS39084.2020.9324069","DOIUrl":null,"url":null,"abstract":"Training deep neural networks requires well-annotated datasets. However, real world datasets are often noisy, especially in a multi-label scenario, i.e. where each data point can be attributed to more than one class. To this end, we propose a regularization method to learn multi-label classification networks from noisy data. This regularization is based on the assumption that semantically close classes are more likely to appear together in a given image. Hereby, we encode label correlations with prior knowledge and regularize noisy network predictions using label correlations. To evaluate its effectiveness, we perform experiments on a mutli-label aerial image dataset contaminated with controlled levels of label noise. Results indicate that networks trained using the proposed method outperform those directly learned from noisy labels and that the benefits increase proportionally to the amount of noise present.","PeriodicalId":444267,"journal":{"name":"IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS39084.2020.9324069","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

Training deep neural networks requires well-annotated datasets. However, real world datasets are often noisy, especially in a multi-label scenario, i.e. where each data point can be attributed to more than one class. To this end, we propose a regularization method to learn multi-label classification networks from noisy data. This regularization is based on the assumption that semantically close classes are more likely to appear together in a given image. Hereby, we encode label correlations with prior knowledge and regularize noisy network predictions using label correlations. To evaluate its effectiveness, we perform experiments on a mutli-label aerial image dataset contaminated with controlled levels of label noise. Results indicate that networks trained using the proposed method outperform those directly learned from noisy labels and that the benefits increase proportionally to the amount of noise present.
在标签噪声下学习多标签航空图像分类:一种使用词嵌入的正则化方法
训练深度神经网络需要有良好注释的数据集。然而,现实世界的数据集通常是嘈杂的,特别是在多标签场景中,即每个数据点可以归因于多个类别。为此,我们提出了一种正则化方法来从噪声数据中学习多标签分类网络。这种正则化是基于这样的假设:语义相近的类更有可能在给定的图像中同时出现。因此,我们用先验知识编码标签相关性,并使用标签相关性正则化有噪声的网络预测。为了评估其有效性,我们在受控制的标签噪声水平污染的多标签航空图像数据集上进行了实验。结果表明,使用所提出的方法训练的网络优于直接从噪声标签中学习的网络,并且收益与存在的噪声量成比例地增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信