Glaucoma detection using wavelet based contourlet transform

K. Nirmala, N. Venkateswaran, C. V. Kumar, J. S. Christobel
{"title":"Glaucoma detection using wavelet based contourlet transform","authors":"K. Nirmala, N. Venkateswaran, C. V. Kumar, J. S. Christobel","doi":"10.1109/i2c2.2017.8321875","DOIUrl":null,"url":null,"abstract":"One of the leading retinal diseases which cause vision loss is Glaucoma. This paper presents the methodology to detect Glaucoma using wavelet based contourlet transform with Gabor filters. The input retinal fundus image is localized for its region of interest and enhanced using adaptive Gamma correction with weighted Distribution function (AGCWD). The blood vessels in ROI are removed using the Gabor filter and morphological operators. To the Region of Interest the wavelet based contourlet transform (WBCT) is applied to extract the features and then given to the Naïve Bayes (NB) classifiers for detecting the normal and glaucomatous image.","PeriodicalId":288351,"journal":{"name":"2017 International Conference on Intelligent Computing and Control (I2C2)","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Intelligent Computing and Control (I2C2)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/i2c2.2017.8321875","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

One of the leading retinal diseases which cause vision loss is Glaucoma. This paper presents the methodology to detect Glaucoma using wavelet based contourlet transform with Gabor filters. The input retinal fundus image is localized for its region of interest and enhanced using adaptive Gamma correction with weighted Distribution function (AGCWD). The blood vessels in ROI are removed using the Gabor filter and morphological operators. To the Region of Interest the wavelet based contourlet transform (WBCT) is applied to extract the features and then given to the Naïve Bayes (NB) classifiers for detecting the normal and glaucomatous image.
基于小波轮廓波变换的青光眼检测
青光眼是导致视力丧失的主要视网膜疾病之一。提出了一种基于小波的轮廓波变换加Gabor滤波器检测青光眼的方法。将输入的眼底图像定位到感兴趣的区域,并使用加权分布函数(AGCWD)自适应伽玛校正进行增强。利用Gabor滤波和形态学算子去除ROI中的血管。对于感兴趣区域,采用基于小波的轮廓波变换(WBCT)提取特征,然后交给Naïve贝叶斯(NB)分类器进行正常和青光眼图像的检测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信