{"title":"Adaptive Neural Network Based Predictive Control of Nonlinear Systems With Slow Dynamics","authors":"Mark Spiller, F. Bakhshande, D. Söffker","doi":"10.1115/DETC2020-22358","DOIUrl":null,"url":null,"abstract":"\n In this paper a data-driven approach for model-free control of nonlinear systems with slow dynamics is proposed. The system behavior is described using a local model respectively a neural network. The network is updated online based on a Kalman filter. By predicting the system behavior two control approaches are discussed. One is obtained by calculating a control input from the one step ahead prediction equation using least squares, the other is obtained by solving a standard linear model predictive control problem. The approaches are tested on a constrained nonlinear MIMO system with slow dynamics.","PeriodicalId":236538,"journal":{"name":"Volume 2: 16th International Conference on Multibody Systems, Nonlinear Dynamics, and Control (MSNDC)","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 2: 16th International Conference on Multibody Systems, Nonlinear Dynamics, and Control (MSNDC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/DETC2020-22358","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper a data-driven approach for model-free control of nonlinear systems with slow dynamics is proposed. The system behavior is described using a local model respectively a neural network. The network is updated online based on a Kalman filter. By predicting the system behavior two control approaches are discussed. One is obtained by calculating a control input from the one step ahead prediction equation using least squares, the other is obtained by solving a standard linear model predictive control problem. The approaches are tested on a constrained nonlinear MIMO system with slow dynamics.