Parallel algorithms for addition in non-standard number systems

Christiane Frougny, P. Heller, E. Pelantová, Milena Svobodová
{"title":"Parallel algorithms for addition in non-standard number systems","authors":"Christiane Frougny, P. Heller, E. Pelantová, Milena Svobodová","doi":"10.1109/ITA.2014.6804265","DOIUrl":null,"url":null,"abstract":"In 1961 Avizienis proposed a parallel algorithm for addition in base 10 with digit set A = {-6, -5, ..., 5, 6}. Such an algorithm performs addition in constant time, independently of the length of the representation of the summands. In computer arithmetic parallel addition is used for speeding up multiplication and division algorithms. In this work we consider number systems where the base is a complex number β such that |β| > 1. We show that we can find a set of signed-digits on which addition is realizable by a parallel algorithm if and only if β is an algebraic number with no conjugate of modulus 1. We then address the question of the size of the digit set that permits parallel addition. We also investigate block parallel addition.","PeriodicalId":338302,"journal":{"name":"2014 Information Theory and Applications Workshop (ITA)","volume":"387 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 Information Theory and Applications Workshop (ITA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITA.2014.6804265","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In 1961 Avizienis proposed a parallel algorithm for addition in base 10 with digit set A = {-6, -5, ..., 5, 6}. Such an algorithm performs addition in constant time, independently of the length of the representation of the summands. In computer arithmetic parallel addition is used for speeding up multiplication and division algorithms. In this work we consider number systems where the base is a complex number β such that |β| > 1. We show that we can find a set of signed-digits on which addition is realizable by a parallel algorithm if and only if β is an algebraic number with no conjugate of modulus 1. We then address the question of the size of the digit set that permits parallel addition. We also investigate block parallel addition.
非标准数字系统中的并行加法算法
1961年,Avizienis提出了一种以10为基数的并行加法算法,其数字集a ={-6, -5,…, 5,6}。这种算法在常数时间内执行加法,与求和表示的长度无关。在计算机算法中,并行加法用于提高乘法和除法的运算速度。在这项工作中,我们考虑基数为复数β的数系统,使得|β| > 1。我们证明了当且仅当β是无共轭模为1的代数数时,我们可以找到一组可以用并行算法实现加法的符号数。然后讨论允许并行加法的数字集的大小问题。我们还研究了块并行加法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信