A Unified Video Summarization for Video Anomalies Through Deep Learning

K. Muchtar, Muhammad Rizky Munggaran, Adhiguna Mahendra, Khairul Anwar, Chih-Yang Lin
{"title":"A Unified Video Summarization for Video Anomalies Through Deep Learning","authors":"K. Muchtar, Muhammad Rizky Munggaran, Adhiguna Mahendra, Khairul Anwar, Chih-Yang Lin","doi":"10.1109/ICMEW56448.2022.9859320","DOIUrl":null,"url":null,"abstract":"Over the last ten years, integrated video surveillance systems have become increasingly important in protecting public safety. Because a single surveillance camera continuously collects events in a specific field of view at all times of day and night, a system that can create a summary that concisely captures key elements of the incoming frames is required. To be more specific, due to time constraints, the enormous amount of video footage cannot be properly examined for analysis. As a result, it is vital to compile a summary of what happened on the scene and look for anomalous events in the footage. A unified approach for detecting and summarizing anomalous events is proposed. To detect the event and compute the anomaly scores, a 3D deep learning approach is used. Afterward, the scores are utilized to visualize and localize the anomalous regions. Finally, the blob analysis technique is used to extract the anomalous regions. To verify the results, quantitative and qualitative evaluations are provided. Experiments indicate that the proposed summarizing method keeps crucial information while producing competitive results. More qualitative results can be found through our project channel: https://youtu.be/eMPMjiGlCQI","PeriodicalId":106759,"journal":{"name":"2022 IEEE International Conference on Multimedia and Expo Workshops (ICMEW)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Multimedia and Expo Workshops (ICMEW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMEW56448.2022.9859320","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Over the last ten years, integrated video surveillance systems have become increasingly important in protecting public safety. Because a single surveillance camera continuously collects events in a specific field of view at all times of day and night, a system that can create a summary that concisely captures key elements of the incoming frames is required. To be more specific, due to time constraints, the enormous amount of video footage cannot be properly examined for analysis. As a result, it is vital to compile a summary of what happened on the scene and look for anomalous events in the footage. A unified approach for detecting and summarizing anomalous events is proposed. To detect the event and compute the anomaly scores, a 3D deep learning approach is used. Afterward, the scores are utilized to visualize and localize the anomalous regions. Finally, the blob analysis technique is used to extract the anomalous regions. To verify the results, quantitative and qualitative evaluations are provided. Experiments indicate that the proposed summarizing method keeps crucial information while producing competitive results. More qualitative results can be found through our project channel: https://youtu.be/eMPMjiGlCQI
基于深度学习的视频异常统一摘要
在过去的十年中,综合视频监控系统在保护公共安全方面变得越来越重要。由于单个监控摄像机在白天和黑夜的任何时间连续收集特定视场中的事件,因此需要一个能够创建摘要的系统,该系统可以简洁地捕获传入帧的关键元素。更具体地说,由于时间的限制,大量的视频片段无法进行适当的检查和分析。因此,对现场发生的事情进行总结并在镜头中寻找异常事件至关重要。提出了一种统一的异常事件检测和汇总方法。为了检测事件并计算异常分数,使用了3D深度学习方法。然后,利用分数来可视化和定位异常区域。最后,利用斑点分析技术提取异常区域。为了验证结果,提供了定量和定性评价。实验结果表明,该方法在保留关键信息的同时,能产生具有竞争力的结果。更多的定性结果可以通过我们的项目渠道:https://youtu.be/eMPMjiGlCQI找到
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信