{"title":"Verification of Recurrent Neural Networks with Star Reachability","authors":"Hoang-Dung Tran, Sung-Woo Choi, Xiaodong Yang, Tomoya Yamaguchi, Bardh Hoxha, D. Prokhorov","doi":"10.1145/3575870.3587128","DOIUrl":null,"url":null,"abstract":"The paper extends the recent star reachability method to verify the robustness of recurrent neural networks (RNNs) for use in safety-critical applications. RNNs are a popular machine learning method for various applications, but they are vulnerable to adversarial attacks, where slightly perturbing the input sequence can lead to an unexpected result. Recent notable techniques for verifying RNNs include unrolling, and invariant inference approaches. The first method has scaling issues since unrolling an RNN creates a large feedforward neural network. The second method, using invariant sets, has better scalability but can produce unknown results due to the accumulation of overapproximation errors over time. This paper introduces a complementary verification method for RNNs that is both sound and complete. A relaxation parameter can be used to convert the method into a fast overapproximation method that still provides soundness guarantees. The method is designed to be used with NNV, a tool for verifying deep neural networks and learning-enabled cyber-physical systems. Compared to state-of-the-art methods, the extended exact reachability method is 10 × faster, and the overapproximation method is 100 × to 5000 × faster.","PeriodicalId":426801,"journal":{"name":"Proceedings of the 26th ACM International Conference on Hybrid Systems: Computation and Control","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 26th ACM International Conference on Hybrid Systems: Computation and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3575870.3587128","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
The paper extends the recent star reachability method to verify the robustness of recurrent neural networks (RNNs) for use in safety-critical applications. RNNs are a popular machine learning method for various applications, but they are vulnerable to adversarial attacks, where slightly perturbing the input sequence can lead to an unexpected result. Recent notable techniques for verifying RNNs include unrolling, and invariant inference approaches. The first method has scaling issues since unrolling an RNN creates a large feedforward neural network. The second method, using invariant sets, has better scalability but can produce unknown results due to the accumulation of overapproximation errors over time. This paper introduces a complementary verification method for RNNs that is both sound and complete. A relaxation parameter can be used to convert the method into a fast overapproximation method that still provides soundness guarantees. The method is designed to be used with NNV, a tool for verifying deep neural networks and learning-enabled cyber-physical systems. Compared to state-of-the-art methods, the extended exact reachability method is 10 × faster, and the overapproximation method is 100 × to 5000 × faster.