Daniel Dominguez, L. Hackett, Micheal J. Miller, Jennifer Restrepo, Katya M. Casper, M. Eichenfield
{"title":"Megahertz Bandwidth Bulk Micromachined Optomechanical Accelerometer With Fiber Optical Interconnects","authors":"Daniel Dominguez, L. Hackett, Micheal J. Miller, Jennifer Restrepo, Katya M. Casper, M. Eichenfield","doi":"10.1109/inertial51137.2021.9430488","DOIUrl":null,"url":null,"abstract":"We present the design, fabrication, and initial characterization of a CMOS compatible, ultra-high bandwidth, bulk-micro machined, optomechanical accelerometer. Displacement detection is achieved via a SiN integrated photonics Mach-Zehnder interferometer (MZI) fabricated on the surface of the device that is optomechanically coupled to acceleration-induced deformation of the accelerometer's proof mass tethers. The device is designed to measure vibrations at microsecond timescales with high dynamic range for the characterization of shock dynamics.","PeriodicalId":424028,"journal":{"name":"2021 IEEE International Symposium on Inertial Sensors and Systems (INERTIAL)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Symposium on Inertial Sensors and Systems (INERTIAL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/inertial51137.2021.9430488","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
We present the design, fabrication, and initial characterization of a CMOS compatible, ultra-high bandwidth, bulk-micro machined, optomechanical accelerometer. Displacement detection is achieved via a SiN integrated photonics Mach-Zehnder interferometer (MZI) fabricated on the surface of the device that is optomechanically coupled to acceleration-induced deformation of the accelerometer's proof mass tethers. The device is designed to measure vibrations at microsecond timescales with high dynamic range for the characterization of shock dynamics.