Javier D. Fernández, Jürgen Umbrich, A. Polleres, Magnus Knuth
{"title":"Evaluating Query and Storage Strategies for RDF Archives","authors":"Javier D. Fernández, Jürgen Umbrich, A. Polleres, Magnus Knuth","doi":"10.1145/2993318.2993333","DOIUrl":null,"url":null,"abstract":"There is an emerging demand on efficiently archiving and (temporal) querying different versions of evolving semantic Web data. As novel archiving systems are starting to address this challenge, foundations/standards for benchmarking RDF archives are needed to evaluate its storage space efficiency and the performance of different retrieval operations. To this end, we provide theoretical foundations on the design of data and queries to evaluate emerging RDF archiving systems. Then, we instantiate these foundations along a concrete set of queries on the basis of a real-world evolving dataset. Finally, we perform an empirical evaluation of various current archiving techniques and querying strategies on this data. Our work comprises -- to the best of our knowledge -- the first benchmark for querying evolving RDF data archives.","PeriodicalId":177013,"journal":{"name":"Proceedings of the 12th International Conference on Semantic Systems","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"59","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 12th International Conference on Semantic Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2993318.2993333","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 59
Abstract
There is an emerging demand on efficiently archiving and (temporal) querying different versions of evolving semantic Web data. As novel archiving systems are starting to address this challenge, foundations/standards for benchmarking RDF archives are needed to evaluate its storage space efficiency and the performance of different retrieval operations. To this end, we provide theoretical foundations on the design of data and queries to evaluate emerging RDF archiving systems. Then, we instantiate these foundations along a concrete set of queries on the basis of a real-world evolving dataset. Finally, we perform an empirical evaluation of various current archiving techniques and querying strategies on this data. Our work comprises -- to the best of our knowledge -- the first benchmark for querying evolving RDF data archives.