Dynamic Distribution Network Reconfiguration Using Reinforcement Learning

Yuanqi Gao, Jie Shi, Wei Wang, N. Yu
{"title":"Dynamic Distribution Network Reconfiguration Using Reinforcement Learning","authors":"Yuanqi Gao, Jie Shi, Wei Wang, N. Yu","doi":"10.1109/SmartGridComm.2019.8909777","DOIUrl":null,"url":null,"abstract":"Dynamic distribution network reconfiguration (DNR) algorithms perform hourly dynamic status changes of sectionalizing and tie switches to reduce network line losses, minimize loss of load, or increase hosting capacity for distributed energy resources. Existing algorithms in this field have demonstrated good results when network parameters are assumed to be known. However, in practice inaccurate distribution network parameter estimates are prevalent. This paper solves the minimum loss dynamic DNR problem without the network parameter information. We formulate the DNR problem as a Markov decision process problem and train an off-policy reinforcement learning (RL) algorithm based on historical operation data set. In the online execution phase, the trained RL agent determines the best network configuration at any time step to minimize the expected total operational cost over the planning horizon, which includes the switching costs. To improve the RL algorithm’s performance, we propose a novel data augmentation method to create additional synthetic training data based on the existing data set. We validate the proposed framework on a 16-bus distribution test feeder with synthetic data. The learned control policy not only reduces the network loss but also improves the voltage profile.","PeriodicalId":377150,"journal":{"name":"2019 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SmartGridComm.2019.8909777","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

Dynamic distribution network reconfiguration (DNR) algorithms perform hourly dynamic status changes of sectionalizing and tie switches to reduce network line losses, minimize loss of load, or increase hosting capacity for distributed energy resources. Existing algorithms in this field have demonstrated good results when network parameters are assumed to be known. However, in practice inaccurate distribution network parameter estimates are prevalent. This paper solves the minimum loss dynamic DNR problem without the network parameter information. We formulate the DNR problem as a Markov decision process problem and train an off-policy reinforcement learning (RL) algorithm based on historical operation data set. In the online execution phase, the trained RL agent determines the best network configuration at any time step to minimize the expected total operational cost over the planning horizon, which includes the switching costs. To improve the RL algorithm’s performance, we propose a novel data augmentation method to create additional synthetic training data based on the existing data set. We validate the proposed framework on a 16-bus distribution test feeder with synthetic data. The learned control policy not only reduces the network loss but also improves the voltage profile.
基于强化学习的动态配电网络重构
动态配电网重构(DNR)算法通过每小时对分网和配网交换机进行动态状态变化,以减少网络线路损耗,使负载损失最小化,或增加分布式能源的承载能力。该领域已有的算法在假设网络参数已知的情况下取得了良好的效果。然而,在实践中,不准确的配电网参数估计是普遍存在的。本文解决了不需要网络参数信息的最小损失动态DNR问题。我们将DNR问题表述为一个马尔可夫决策过程问题,并基于历史运行数据集训练一种离策略强化学习(RL)算法。在在线执行阶段,经过训练的RL代理在任何时间步确定最佳网络配置,以最小化计划范围内的预期总运营成本,其中包括切换成本。为了提高强化学习算法的性能,我们提出了一种新的数据增强方法,在现有数据集的基础上创建额外的合成训练数据。我们用综合数据在16总线配电测试馈线上验证了所提出的框架。学习后的控制策略不仅降低了网络损耗,而且改善了电压分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信