A New Stability Condition of Discrete Hopfield Neural Networks with Weight Function Matrix

Y. Zhang, Jun Li, Zheng-wang Ye
{"title":"A New Stability Condition of Discrete Hopfield Neural Networks with Weight Function Matrix","authors":"Y. Zhang, Jun Li, Zheng-wang Ye","doi":"10.1109/FITME.2008.118","DOIUrl":null,"url":null,"abstract":"The stability analysis of discrete Hopfield neural networks(DHNNs) not only has an important theoretical significance, but also can be widely used in the associative memory, combinatorial optimization, etc. Most matrixes of DHNNs and DHNNs with delay are constant matrixes. The stability of discrete Hopfield neural networks with weight function matrix (DHNNWFM) is studied. A new stability condition for DHNNWFM is presented by using the Lyapunov method.","PeriodicalId":218182,"journal":{"name":"2008 International Seminar on Future Information Technology and Management Engineering","volume":"213 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 International Seminar on Future Information Technology and Management Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FITME.2008.118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The stability analysis of discrete Hopfield neural networks(DHNNs) not only has an important theoretical significance, but also can be widely used in the associative memory, combinatorial optimization, etc. Most matrixes of DHNNs and DHNNs with delay are constant matrixes. The stability of discrete Hopfield neural networks with weight function matrix (DHNNWFM) is studied. A new stability condition for DHNNWFM is presented by using the Lyapunov method.
具有权函数矩阵的离散Hopfield神经网络的一个新的稳定性条件
离散Hopfield神经网络(DHNNs)的稳定性分析不仅具有重要的理论意义,而且在联想记忆、组合优化等方面具有广泛的应用前景。dhnn和具有延迟的dhnn的矩阵大多是常数矩阵。研究了具有权函数矩阵的离散Hopfield神经网络的稳定性。利用李雅普诺夫方法给出了DHNNWFM的一个新的稳定条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信