A Quantitative Study on Simultaneous Effects of Governing Parameters in Electrospinning of Nanofibers using Modified Neural Network using Genetic Algorithm

Shayan Seyedin, S. Maghsoodloo, V. Mottaghitalab
{"title":"A Quantitative Study on Simultaneous Effects of Governing Parameters in Electrospinning of Nanofibers using Modified Neural Network using Genetic Algorithm","authors":"Shayan Seyedin, S. Maghsoodloo, V. Mottaghitalab","doi":"10.4018/IJCCE.2017010102","DOIUrl":null,"url":null,"abstract":"Inthisarticle,modifiedneuralnetworksusinggeneticalgorithmswereemployedtoinvestigatethe simultaneouseffectsoffourofthemostimportantparameters,namely;solutionconcentration(C); spinningdistance(d);appliedvoltage(V);andvolumeflowrate(Q)onmeanfiberdiameter(MFD), as well as standard deviation of fiber diameter (StdFD) in electrospinning of polyvinyl alcohol (PVA)nanofibers.Geneticalgorithmoptimizedneuralnetworks(GANN)wereusedformodeling theelectrospinningprocess.Theresultsindicatebetterexperimentalconditionsandmorepredictive abilityofGANNs.Therefore,theapproachofusinggeneticalgorithmstooptimizeneuralnetworksfor modelingtheelectrospinningprocesshasbeensuccessful.RSMcouldbeemployedwhenstatistical analysis,quantitativestudyoftheeffectsoftheparametersandvisualizationoftheresponsesurfaces areofinterest,whereasinthecaseofmodelingtheprocessandpredictingnewconditions,GANN isamorepowerfultoolandpresentsmoredesirableresults. KEywoRdS Electrospinning, Empirical Modeling, Genetic Algorithm Optimized Neural Networks (GANN), Response Surface Methodology","PeriodicalId":132974,"journal":{"name":"Int. J. Chemoinformatics Chem. Eng.","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Chemoinformatics Chem. Eng.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJCCE.2017010102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Inthisarticle,modifiedneuralnetworksusinggeneticalgorithmswereemployedtoinvestigatethe simultaneouseffectsoffourofthemostimportantparameters,namely;solutionconcentration(C); spinningdistance(d);appliedvoltage(V);andvolumeflowrate(Q)onmeanfiberdiameter(MFD), as well as standard deviation of fiber diameter (StdFD) in electrospinning of polyvinyl alcohol (PVA)nanofibers.Geneticalgorithmoptimizedneuralnetworks(GANN)wereusedformodeling theelectrospinningprocess.Theresultsindicatebetterexperimentalconditionsandmorepredictive abilityofGANNs.Therefore,theapproachofusinggeneticalgorithmstooptimizeneuralnetworksfor modelingtheelectrospinningprocesshasbeensuccessful.RSMcouldbeemployedwhenstatistical analysis,quantitativestudyoftheeffectsoftheparametersandvisualizationoftheresponsesurfaces areofinterest,whereasinthecaseofmodelingtheprocessandpredictingnewconditions,GANN isamorepowerfultoolandpresentsmoredesirableresults. KEywoRdS Electrospinning, Empirical Modeling, Genetic Algorithm Optimized Neural Networks (GANN), Response Surface Methodology
基于遗传算法改进神经网络的纳米纤维静电纺丝控制参数同步效应定量研究
Inthisarticle,modifiedneuralnetworksusinggeneticalgorithmswereemployedtoinvestigatethe simultaneouseffectsoffourofthemostimportantparameters,namely;solutionconcentration(C); spinningdistance(d);appliedvoltage(V);andvolumeflowrate(Q)onmeanfiberdiameter(MFD),以及聚乙烯醇电纺丝中纤维直径(StdFD)的标准偏差(PVA)nanofibers.Geneticalgorithmoptimizedneuralnetworks(GANN)wereusedformodeling theelectrospinningprocess。Theresultsindicatebetterexperimentalconditionsandmorepredictive abilityofGANNs。Therefore,theapproachofusinggeneticalgorithmstooptimizeneuralnetworksfor modelingtheelectrospinningprocesshasbeensuccessful。RSMcouldbeemployedwhenstatistical分析,quantitativestudyoftheeffectsoftheparametersandvisualizationoftheresponsesurfaces areofinterest,whereasinthecaseofmodelingtheprocessandpredictingnewconditions,GANN isamorepowerfultoolandpresentsmoredesirableresults。关键词静电纺丝,经验建模,遗传算法优化神经网络,响应面方法
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信