Simultaneous rigid E-unification and related algorithmic problems

A. Degtyarev, Y. Matiyasevich, A. Voronkov
{"title":"Simultaneous rigid E-unification and related algorithmic problems","authors":"A. Degtyarev, Y. Matiyasevich, A. Voronkov","doi":"10.1109/LICS.1996.561466","DOIUrl":null,"url":null,"abstract":"The notion of simultaneous rigid E-unification was introduced in 1987 in the area of automated theorem proving with equality in sequent-based methods, for example the connection method or the tableau method. Recently, simultaneous rigid E-unification was shown undecidable. Despite the importance of this notion, for example in theorem proving in intuitionistic logic, very little is known of its decidable fragments. We prove decidability results for fragments of monadic simultaneous rigid E-unification and show the connections between this notion and some algorithmic problems of logic and computer science.","PeriodicalId":382663,"journal":{"name":"Proceedings 11th Annual IEEE Symposium on Logic in Computer Science","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 11th Annual IEEE Symposium on Logic in Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LICS.1996.561466","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 33

Abstract

The notion of simultaneous rigid E-unification was introduced in 1987 in the area of automated theorem proving with equality in sequent-based methods, for example the connection method or the tableau method. Recently, simultaneous rigid E-unification was shown undecidable. Despite the importance of this notion, for example in theorem proving in intuitionistic logic, very little is known of its decidable fragments. We prove decidability results for fragments of monadic simultaneous rigid E-unification and show the connections between this notion and some algorithmic problems of logic and computer science.
同时刚性e统一及相关算法问题
同时刚性e -统一的概念于1987年在基于顺序的方法(例如连接法或表法)中的相等性自动定理证明领域中被引入。最近,同时刚性e -统一被证明是不可确定的。尽管这个概念很重要,例如在直觉逻辑的定理证明中,但对于它的可判定片段却知之甚少。我们证明了一元同时刚性e统一的片段的可决性结果,并说明了这一概念与逻辑和计算机科学的一些算法问题之间的联系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信