On the St. Petersburg paradox

T. Cover
{"title":"On the St. Petersburg paradox","authors":"T. Cover","doi":"10.1109/ISIT.2011.6033850","DOIUrl":null,"url":null,"abstract":"We<sup>1</sup> ask what is the appropriate price c to pay to receive an amount X ≥ 0; X ∼ F(x). This is known as the St. Petersburg paradox if Pr{X = 2<sup>k</sup>} = 2<sup>−k</sup>, k = 1, 2, … Here EX = ∞. Is any price c aceptable? We consider this distribution as well as the distribution Pr{X = 2<sup>2k</sup>} = 2<sup>−k</sup>, k = 1, 2, …, which might be called the super St. Petersburg paradox in which not only is EX equal to infinity, but E log X is infinity as well. Let μ<inf>r</inf> = (EX<sup>r</sup>)<sup>1/r</sup> denote the r<sup>th</sup> mean of X. We identify three critical costs, μ<inf>−1</inf> = 1/E(1/X), μ<inf>0</inf> = e<sup>E lnX</sup>, and μ<inf>1</inf> = EX, and conclude that we want some of X if c ≤ μ<inf>1</inf>, and that taking all of X is growth optimal if c ≤ μ<inf>−1</inf>. Thus all prices c are attractive in the St. Petersburg game.","PeriodicalId":208375,"journal":{"name":"2011 IEEE International Symposium on Information Theory Proceedings","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"49","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Symposium on Information Theory Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2011.6033850","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 49

Abstract

We1 ask what is the appropriate price c to pay to receive an amount X ≥ 0; X ∼ F(x). This is known as the St. Petersburg paradox if Pr{X = 2k} = 2−k, k = 1, 2, … Here EX = ∞. Is any price c aceptable? We consider this distribution as well as the distribution Pr{X = 22k} = 2−k, k = 1, 2, …, which might be called the super St. Petersburg paradox in which not only is EX equal to infinity, but E log X is infinity as well. Let μr = (EXr)1/r denote the rth mean of X. We identify three critical costs, μ−1 = 1/E(1/X), μ0 = eE lnX, and μ1 = EX, and conclude that we want some of X if c ≤ μ1, and that taking all of X is growth optimal if c ≤ μ−1. Thus all prices c are attractive in the St. Petersburg game.
关于圣彼得堡悖论
我们问获得X≥0时,c支付的合适价格是多少;X ~ F(X)如果Pr{X = 2k} = 2−k, k = 1,2,…这就是圣彼得堡悖论,这里EX =∞。c价可以接受吗?我们考虑这个分布以及分布Pr{X = 22k} = 2 - k, k = 1,2,…,这可能被称为超级圣彼得堡悖论,其中不仅EX等于无穷大,而且E log X也等于无穷大。令μr = (EXr)1/r表示X的第n个平均值。我们确定了三个临界代价,μ−1 = 1/E(1/X), μ0 = eE lnX,和μ1 = EX,并得出当c≤μ−1时我们只需要X的一部分,当c≤μ−1时取全部X是生长最优的结论。因此,在圣彼得堡博弈中,所有价格c都是有吸引力的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信