BigDataStack: A Holistic Data-Driven Stack for Big Data Applications and Operations

D. Kyriazis, C. Doulkeridis, P. Gouvas, R. Jiménez-Peris, A. J. Ferrer, L. Kallipolitis, Pavlos Kranas, George Kousiouris, C. Macdonald, R. McCreadie, Y. Moatti, Apostolos Papageorgiou, M. Patiño-Martínez, Stathis Plitsos, Dimitrios Poulopoulos, Antonio Paradell, A. Raouzaiou, Paula Ta-Shma, V. Vianello
{"title":"BigDataStack: A Holistic Data-Driven Stack for Big Data Applications and Operations","authors":"D. Kyriazis, C. Doulkeridis, P. Gouvas, R. Jiménez-Peris, A. J. Ferrer, L. Kallipolitis, Pavlos Kranas, George Kousiouris, C. Macdonald, R. McCreadie, Y. Moatti, Apostolos Papageorgiou, M. Patiño-Martínez, Stathis Plitsos, Dimitrios Poulopoulos, Antonio Paradell, A. Raouzaiou, Paula Ta-Shma, V. Vianello","doi":"10.1109/BigDataCongress.2018.00041","DOIUrl":null,"url":null,"abstract":"The new data-driven industrial revolution highlights the need for big data technologies to unlock the potential in various application domains. In this context, emerging innovative solutions exploit several underlying infrastructure and cluster management systems. However, these systems have not been designed and implemented in a \"big data context\", and they rather emphasize and address the computational needs and aspects of applications and services to be deployed. In this paper we present the architecture of a complete stack (namely BigDataStack), based on a frontrunner infrastructure management system that drives decisions according to data aspects, thus being fully scalable, runtime adaptable and high-performant to address the needs of big data operations and data-intensive applications. Furthermore, the stack goes beyond purely infrastructure elements by introducing techniques for dimensioning big data applications, modelling and analyzing of processes as well as provisioning data-as-a-service by exploiting a seamless analytics framework.","PeriodicalId":177250,"journal":{"name":"2018 IEEE International Congress on Big Data (BigData Congress)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Congress on Big Data (BigData Congress)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BigDataCongress.2018.00041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

The new data-driven industrial revolution highlights the need for big data technologies to unlock the potential in various application domains. In this context, emerging innovative solutions exploit several underlying infrastructure and cluster management systems. However, these systems have not been designed and implemented in a "big data context", and they rather emphasize and address the computational needs and aspects of applications and services to be deployed. In this paper we present the architecture of a complete stack (namely BigDataStack), based on a frontrunner infrastructure management system that drives decisions according to data aspects, thus being fully scalable, runtime adaptable and high-performant to address the needs of big data operations and data-intensive applications. Furthermore, the stack goes beyond purely infrastructure elements by introducing techniques for dimensioning big data applications, modelling and analyzing of processes as well as provisioning data-as-a-service by exploiting a seamless analytics framework.
BigDataStack:面向大数据应用和运营的整体数据驱动堆栈
新数据驱动的工业革命凸显了对大数据技术的需求,以释放各个应用领域的潜力。在这种情况下,新兴的创新解决方案利用了几个底层基础设施和集群管理系统。然而,这些系统并不是在“大数据环境”中设计和实现的,而是强调和解决要部署的应用程序和服务的计算需求和方面。在本文中,我们提出了一个完整的堆栈架构(即BigDataStack),基于一个领先的基础设施管理系统,根据数据方面驱动决策,因此具有完全可扩展性,运行时适应性和高性能,以满足大数据运营和数据密集型应用的需求。此外,该堆栈超越了纯粹的基础设施元素,引入了对大数据应用程序进行维度化、对流程进行建模和分析以及通过利用无缝分析框架提供数据即服务的技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信