Video event classification and anomaly identification using spectral clustering

W. S. K. Fernando, P. Perera, H. Herath, M. Ekanayake, G. Godaliyadda, J. Wijayakulasooriya
{"title":"Video event classification and anomaly identification using spectral clustering","authors":"W. S. K. Fernando, P. Perera, H. Herath, M. Ekanayake, G. Godaliyadda, J. Wijayakulasooriya","doi":"10.1109/ICTER.2015.7377661","DOIUrl":null,"url":null,"abstract":"This paper proposes a spectral clustering based methodology to classify video events and to detect anomalies. Feature trajectories from objects in a video are modelled, compared and clustered in order to classify the detected object events. Principles of normalized spectral clustering are used with modifications to affinity structure. A novel method for determining spectral clustering parameters based on Eigen structure of the affinity matrix is introduced. Employment of unsupervised learning for event classification is made possible by the proposed successive cluster identity labelling algorithm. A mechanism to identify abnormal events under the context is also introduced. The effectiveness and the robustness of the proposed methodology are demonstrated through experiments conducted on video streams focusing on human motion patterns.","PeriodicalId":142561,"journal":{"name":"2015 Fifteenth International Conference on Advances in ICT for Emerging Regions (ICTer)","volume":"216 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Fifteenth International Conference on Advances in ICT for Emerging Regions (ICTer)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTER.2015.7377661","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper proposes a spectral clustering based methodology to classify video events and to detect anomalies. Feature trajectories from objects in a video are modelled, compared and clustered in order to classify the detected object events. Principles of normalized spectral clustering are used with modifications to affinity structure. A novel method for determining spectral clustering parameters based on Eigen structure of the affinity matrix is introduced. Employment of unsupervised learning for event classification is made possible by the proposed successive cluster identity labelling algorithm. A mechanism to identify abnormal events under the context is also introduced. The effectiveness and the robustness of the proposed methodology are demonstrated through experiments conducted on video streams focusing on human motion patterns.
基于光谱聚类的视频事件分类与异常识别
本文提出了一种基于光谱聚类的视频事件分类和异常检测方法。对视频中物体的特征轨迹进行建模、比较和聚类,以便对检测到的物体事件进行分类。采用归一化谱聚类原理,对亲和结构进行修改。介绍了一种基于亲和矩阵特征结构确定谱聚类参数的新方法。通过提出的连续聚类身份标记算法,使无监督学习的事件分类成为可能。介绍了一种识别上下文环境下异常事件的机制。通过对关注人体运动模式的视频流进行实验,证明了所提出方法的有效性和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信