A. Alizadeh, Pooya Tavallali, Vahid Behzadan, A. Ranganath, Mukesh Singhal
{"title":"A Novel Approach for Synthetic Reduced Nearest-Neighbor Leveraging Neural Networks","authors":"A. Alizadeh, Pooya Tavallali, Vahid Behzadan, A. Ranganath, Mukesh Singhal","doi":"10.1109/ICMLA55696.2022.00138","DOIUrl":null,"url":null,"abstract":"Synthetic Reduced Nearest Neighbor is a nearest neighbor model that is constrained on synthetic samples (i.e., prototypes). The body of work on such models includes proposals for improving the interpretability and optimization of SRNN models using expectation maximization. Motivated by the promise of this paradigm, we propose a novel Expectation Maximization approach for Synthetic Reduced Nearest Neighbors leveraging neural networks. Furthermore, we compare the performance of our proposed technique to classical state-of-the-art machine learning methods such as random forest and ensemble models. The empirical results demonstrate the advantages of using neural networks in lieu of an expectation maximization algorithm.","PeriodicalId":128160,"journal":{"name":"2022 21st IEEE International Conference on Machine Learning and Applications (ICMLA)","volume":"352 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 21st IEEE International Conference on Machine Learning and Applications (ICMLA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA55696.2022.00138","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Synthetic Reduced Nearest Neighbor is a nearest neighbor model that is constrained on synthetic samples (i.e., prototypes). The body of work on such models includes proposals for improving the interpretability and optimization of SRNN models using expectation maximization. Motivated by the promise of this paradigm, we propose a novel Expectation Maximization approach for Synthetic Reduced Nearest Neighbors leveraging neural networks. Furthermore, we compare the performance of our proposed technique to classical state-of-the-art machine learning methods such as random forest and ensemble models. The empirical results demonstrate the advantages of using neural networks in lieu of an expectation maximization algorithm.