Sufficient Conditions for a Central Limit Theorem to Assess the Error of Randomized Quasi-Monte Carlo Methods

Marvin K. Nakayama, B. Tuffin
{"title":"Sufficient Conditions for a Central Limit Theorem to Assess the Error of Randomized Quasi-Monte Carlo Methods","authors":"Marvin K. Nakayama, B. Tuffin","doi":"10.1109/WSC52266.2021.9715427","DOIUrl":null,"url":null,"abstract":"Randomized quasi-Monte Carlo (RQMC) can produce an estimator of a mean (i.e., integral) with root-mean-square error that shrinks at a faster rate than (standard) Monte Carlo's. While RQMC is commonly employed to provide a confidence interval (CI) for the mean, this approach implicitly assumes that the RQMC estimator obeys a central limit theorem (CLT), which has not been established for most RQMC settings. To address this, we provide various conditions that ensure an RQMC CLT, as well as an asymptotically valid CI, and examine the tradeoffs in our restrictions. Our sufficient conditions, depending on the regularity of the integrand, often require that the number of randomizations grows sufficiently fast relative to the number of points used from the low-discrepancy sequence.","PeriodicalId":369368,"journal":{"name":"2021 Winter Simulation Conference (WSC)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Winter Simulation Conference (WSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WSC52266.2021.9715427","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Randomized quasi-Monte Carlo (RQMC) can produce an estimator of a mean (i.e., integral) with root-mean-square error that shrinks at a faster rate than (standard) Monte Carlo's. While RQMC is commonly employed to provide a confidence interval (CI) for the mean, this approach implicitly assumes that the RQMC estimator obeys a central limit theorem (CLT), which has not been established for most RQMC settings. To address this, we provide various conditions that ensure an RQMC CLT, as well as an asymptotically valid CI, and examine the tradeoffs in our restrictions. Our sufficient conditions, depending on the regularity of the integrand, often require that the number of randomizations grows sufficiently fast relative to the number of points used from the low-discrepancy sequence.
评价随机拟蒙特卡罗方法误差的一个中心极限定理的充分条件
随机拟蒙特卡罗(RQMC)可以产生具有均方根误差(即积分)的估计量,其收缩速度比(标准)蒙特卡罗更快。虽然RQMC通常用于为平均值提供置信区间(CI),但这种方法隐含地假设RQMC估计器遵循中心极限定理(CLT),而该定理尚未为大多数RQMC设置建立。为了解决这个问题,我们提供了确保RQMC CLT以及渐近有效CI的各种条件,并检查了我们的限制中的权衡。我们的充分条件,取决于被积函数的正则性,通常要求随机化的数量相对于低差异序列中使用的点的数量增长得足够快。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信