Remarks on Quaternion Multi–Layer Neural Network Based on the Generalised HR Calculus

Kazuhiko Takahashi, Eri Tano, M. Hashimoto
{"title":"Remarks on Quaternion Multi–Layer Neural Network Based on the Generalised HR Calculus","authors":"Kazuhiko Takahashi, Eri Tano, M. Hashimoto","doi":"10.1109/anzcc53563.2021.9628250","DOIUrl":null,"url":null,"abstract":"This study investigates a training method of a quaternion multi–layer neural network based on a gradient– descent method extended to quaternion numbers. The gradient of the cost function is calculated using the generalised ${\\mathbb{H}}{\\mathbb{R}}$ calculus to derive the training rule for the network parameters. Computational experiments for identifying and controlling a discrete–time nonlinear plant were conducted to evaluate the proposed method. The results confirmed the feasibility of using the G ${\\mathbb{H}}{\\mathbb{R}}$ calculus in the quaternion neural network and showed the capability of using the quaternion neural network for a control system application.","PeriodicalId":246687,"journal":{"name":"2021 Australian & New Zealand Control Conference (ANZCC)","volume":"332 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Australian & New Zealand Control Conference (ANZCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/anzcc53563.2021.9628250","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates a training method of a quaternion multi–layer neural network based on a gradient– descent method extended to quaternion numbers. The gradient of the cost function is calculated using the generalised ${\mathbb{H}}{\mathbb{R}}$ calculus to derive the training rule for the network parameters. Computational experiments for identifying and controlling a discrete–time nonlinear plant were conducted to evaluate the proposed method. The results confirmed the feasibility of using the G ${\mathbb{H}}{\mathbb{R}}$ calculus in the quaternion neural network and showed the capability of using the quaternion neural network for a control system application.
基于广义HR演算的四元数多层神经网络评述
研究了一种基于梯度下降法的四元数多层神经网络的训练方法。使用广义${\mathbb{H}}{\mathbb{R}}$演算计算代价函数的梯度,推导出网络参数的训练规则。通过离散非线性对象辨识与控制的计算实验,对该方法进行了验证。结果证实了在四元数神经网络中使用G ${\mathbb{H}}{\mathbb{R}}$演算的可行性,并显示了将四元数神经网络用于控制系统应用的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信