Term Weighting Schemes for Emerging Event Detection

Yanghui Rao, Qing Li
{"title":"Term Weighting Schemes for Emerging Event Detection","authors":"Yanghui Rao, Qing Li","doi":"10.1109/WI-IAT.2012.66","DOIUrl":null,"url":null,"abstract":"As an event-based task, Emerging Event Detection (EED) faces the problems of multiple events on the same subject and the evolution of events. Current term weighting schemes for EED exploiting Named Entity, temporal information and Topic Modeling all have their limited utility. In this paper, a new term weighting scheme, which models the sparse aspect, global weight and local weight of each story, is proposed. Then, an unsupervised algorithm based on the new scheme is applied to EED. We evaluate our approach on two datasets from TDT5, and compare it with TFIDF and existing two schemes exploiting Topic Modeling. Experiments on Retrospective and On-line EED show that our scheme yields better results.","PeriodicalId":220218,"journal":{"name":"2012 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WI-IAT.2012.66","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

As an event-based task, Emerging Event Detection (EED) faces the problems of multiple events on the same subject and the evolution of events. Current term weighting schemes for EED exploiting Named Entity, temporal information and Topic Modeling all have their limited utility. In this paper, a new term weighting scheme, which models the sparse aspect, global weight and local weight of each story, is proposed. Then, an unsupervised algorithm based on the new scheme is applied to EED. We evaluate our approach on two datasets from TDT5, and compare it with TFIDF and existing two schemes exploiting Topic Modeling. Experiments on Retrospective and On-line EED show that our scheme yields better results.
新兴事件检测的术语加权方案
新兴事件检测作为一种基于事件的任务,面临着同一主题上的多个事件和事件演化的问题。当前用于EED开发命名实体、时态信息和主题建模的术语加权方案都有其局限性。本文提出了一种新的术语加权方案,该方案对每个故事的稀疏方面、全局权重和局部权重进行建模。然后,将基于新方案的无监督算法应用于EED。我们在TDT5的两个数据集上评估了我们的方法,并将其与TFIDF和现有的两种利用主题建模的方案进行了比较。在回溯式和在线EED上的实验表明,该方案取得了较好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信