A stochastic segment model for phoneme-based continuous speech recognition

Salim Roukos, M. O. Dunham
{"title":"A stochastic segment model for phoneme-based continuous speech recognition","authors":"Salim Roukos, M. O. Dunham","doi":"10.1109/ICASSP.1987.1169700","DOIUrl":null,"url":null,"abstract":"Developing accurate and robust phonetic models for the different speech sounds is a major challenge for high performance continuous speech recognition. In this paper, we introduce a new approach, called the stochastic segment model, for modelling a variable-length phonetic segment X, an L-long sequence of feature vectors. The stochastic segment model consists of 1) time-warping the variable-length segment X into a fixed-length segment Y called a resampled segment, and 2) a joint density function of the parameters of the resampled segment Y, which in this work is assumed Gaussian. In this paper, we describe the stochastic segment model, the recognition algorithm, and the iterative training algorithm for estimating segment models from continuous speech. For speaker-dependent continuous speech recognition, the segment model reduces the word error rate by one third over a hidden Markov phonetic model.","PeriodicalId":140810,"journal":{"name":"ICASSP '87. IEEE International Conference on Acoustics, Speech, and Signal Processing","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1987-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP '87. IEEE International Conference on Acoustics, Speech, and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.1987.1169700","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

Developing accurate and robust phonetic models for the different speech sounds is a major challenge for high performance continuous speech recognition. In this paper, we introduce a new approach, called the stochastic segment model, for modelling a variable-length phonetic segment X, an L-long sequence of feature vectors. The stochastic segment model consists of 1) time-warping the variable-length segment X into a fixed-length segment Y called a resampled segment, and 2) a joint density function of the parameters of the resampled segment Y, which in this work is assumed Gaussian. In this paper, we describe the stochastic segment model, the recognition algorithm, and the iterative training algorithm for estimating segment models from continuous speech. For speaker-dependent continuous speech recognition, the segment model reduces the word error rate by one third over a hidden Markov phonetic model.
基于音素的连续语音识别随机片段模型
为不同的语音建立准确、鲁棒的语音模型是实现高性能连续语音识别的主要挑战。在本文中,我们引入了一种新的方法,称为随机段模型,用于建模一个变长语音段X,一个l长的特征向量序列。随机段模型包括:1)将变长段X时间规整为被称为重采样段的定长段Y; 2)重采样段Y参数的联合密度函数,在本文中假设为高斯分布。在本文中,我们描述了随机片段模型、识别算法以及从连续语音中估计片段模型的迭代训练算法。对于依赖于说话人的连续语音识别,该分段模型比隐马尔可夫语音模型降低了三分之一的单词错误率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信