Global Robust Bayesian Analysis in Large Models

P. Ho
{"title":"Global Robust Bayesian Analysis in Large Models","authors":"P. Ho","doi":"10.2139/ssrn.3452643","DOIUrl":null,"url":null,"abstract":"This paper develops tools for global prior sensitivity analysis in large Bayesian models. Without imposing parametric restrictions, the framework provides bounds for a wide range of posterior statistics given any prior that is close to the original in relative entropy. The methodology also reveals parts of the prior that are important for the posterior statistics of interest. To implement these calculations in large models, we develop a sequential Monte Carlo algorithm and use approximations to the likelihood and statistic of interest. We use the framework to study error bands for the impulse response of output to a monetary policy shock in the New Keynesian model of Smets and Wouters (2007). The error bands depend asymmetrically on the prior through features of the likelihood that are hard to detect without this formal prior sensitivity analysis.","PeriodicalId":127579,"journal":{"name":"ERN: Keynes; Keynesian; Post-Keynesian (Topic)","volume":"381 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Keynes; Keynesian; Post-Keynesian (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3452643","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

This paper develops tools for global prior sensitivity analysis in large Bayesian models. Without imposing parametric restrictions, the framework provides bounds for a wide range of posterior statistics given any prior that is close to the original in relative entropy. The methodology also reveals parts of the prior that are important for the posterior statistics of interest. To implement these calculations in large models, we develop a sequential Monte Carlo algorithm and use approximations to the likelihood and statistic of interest. We use the framework to study error bands for the impulse response of output to a monetary policy shock in the New Keynesian model of Smets and Wouters (2007). The error bands depend asymmetrically on the prior through features of the likelihood that are hard to detect without this formal prior sensitivity analysis.
大型模型的全局鲁棒贝叶斯分析
本文开发了大型贝叶斯模型的全局先验灵敏度分析工具。在不施加参数限制的情况下,该框架为大范围的后验统计提供了边界,给定任何与原始相对熵接近的先验。该方法还揭示了先验的部分,这对感兴趣的后验统计很重要。为了在大型模型中实现这些计算,我们开发了一个顺序蒙特卡罗算法,并使用近似的似然和感兴趣的统计量。我们使用该框架来研究Smets和Wouters(2007)的新凯恩斯模型中产出对货币政策冲击的脉冲响应的误差带。误差带不对称地依赖于先验,通过似然的特征,如果没有这种正式的先验敏感性分析,很难检测到。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信