Stability Analysis of Modified General Version of Gauss-type Proximal Point Method for Solving Generalized Equations Using Metrically Regular Mapping

Md. Asraful Alom, Md. Zaidur Rahman
{"title":"Stability Analysis of Modified General Version of Gauss-type Proximal Point Method for Solving Generalized Equations Using Metrically Regular Mapping","authors":"Md. Asraful Alom, Md. Zaidur Rahman","doi":"10.56557/ajomcor/2023/v30i28294","DOIUrl":null,"url":null,"abstract":"A modified general version of Gauss-type proximal point algorithm (GGPPA) is presented in this article for solving the parameterized generalized equation y ∈ F(x), where y is a parameter and a set-valued mapping F: X ⇉ 2Y is acting between two different Banach spaces X and Y. We demonstrate the existence of any sequence produced by the modified GGPPA by taking certain presumptions into account, and we use metrically regular mapping to demonstrate the uniformity of semi-local and local convergence findings. Finally, we present a numerical experiment to verify the uniformity of semi-local convergence result.","PeriodicalId":200824,"journal":{"name":"Asian Journal of Mathematics and Computer Research","volume":"210 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Mathematics and Computer Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56557/ajomcor/2023/v30i28294","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A modified general version of Gauss-type proximal point algorithm (GGPPA) is presented in this article for solving the parameterized generalized equation y ∈ F(x), where y is a parameter and a set-valued mapping F: X ⇉ 2Y is acting between two different Banach spaces X and Y. We demonstrate the existence of any sequence produced by the modified GGPPA by taking certain presumptions into account, and we use metrically regular mapping to demonstrate the uniformity of semi-local and local convergence findings. Finally, we present a numerical experiment to verify the uniformity of semi-local convergence result.
利用度量正则映射求解广义方程的改进一般版高斯型近点法的稳定性分析
本文给出了求解参数化广义方程y∈F(x)的一种改进的通用版gauss型近点算法(GGPPA),其中y为参数,为集值映射F:X 2Y作用于两个不同的Banach空间X和y之间。我们通过考虑某些假设证明了由改进的GGPPA产生的任意序列的存在性,并且我们使用度量正则映射证明了半局部和局部收敛结果的一致性。最后,通过数值实验验证了半局部收敛结果的均匀性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信