Theme Based Clustering of Tweets

R. M. Tripathy, S. Sharma, Sachindra Joshi, S. Mehta, A. Bagchi
{"title":"Theme Based Clustering of Tweets","authors":"R. M. Tripathy, S. Sharma, Sachindra Joshi, S. Mehta, A. Bagchi","doi":"10.1145/2567688.2567694","DOIUrl":null,"url":null,"abstract":"In this paper, we present overview of our approach for clustering tweets. Due to short text of tweets, traditional text clustering mechanisms alone may not produce optimal results. We believe that there is an underlying theme/topic present in majority of tweets which is evident in growing usage of hashtag feature in the Twitter network. Clustering tweets based on these themes seems a more natural way for grouping. We propose to use Wikipedia topic taxonomy to discover the themes from the tweets and use the themes along with traditional word based similarity metric for clustering. We show some of our initial results to demonstrate the effectiveness of our approach.","PeriodicalId":253386,"journal":{"name":"Proceedings of the 1st IKDD Conference on Data Sciences","volume":"379 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1st IKDD Conference on Data Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2567688.2567694","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

In this paper, we present overview of our approach for clustering tweets. Due to short text of tweets, traditional text clustering mechanisms alone may not produce optimal results. We believe that there is an underlying theme/topic present in majority of tweets which is evident in growing usage of hashtag feature in the Twitter network. Clustering tweets based on these themes seems a more natural way for grouping. We propose to use Wikipedia topic taxonomy to discover the themes from the tweets and use the themes along with traditional word based similarity metric for clustering. We show some of our initial results to demonstrate the effectiveness of our approach.
基于主题的Tweets聚类
在本文中,我们概述了聚类tweet的方法。由于tweets的文本较短,传统的文本聚类机制可能无法产生最佳结果。我们认为,大多数推文都有一个潜在的主题/话题,这在推特网络中越来越多地使用标签功能是显而易见的。基于这些主题对tweet进行聚类似乎是一种更自然的分组方式。我们建议使用维基百科主题分类法从tweet中发现主题,并将主题与传统的基于词的相似度度量一起用于聚类。我们展示了我们的一些初步结果,以证明我们的方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信