High Frequency House Price Indexes with Scarce Data

Steven C. Bourassa, Martin Hoesli
{"title":"High Frequency House Price Indexes with Scarce Data","authors":"Steven C. Bourassa, Martin Hoesli","doi":"10.2139/ssrn.2789585","DOIUrl":null,"url":null,"abstract":"We show how a method that has been applied to commercial real estate markets can be used to produce high frequency house price indexes for a city and for submarkets within a city. Our application of this method involves estimating a set of annual robust repeat sales regressions staggered by start date and then undertaking an annual-to-monthly (ATM) transformation with a generalized inverse estimator. Using transactions data for Louisville, Kentucky, we show that the method substantially reduces the volatility of high frequency indexes at the city and submarket levels. We demonstrate that both volatility and the benefits from using the ATM method are related to sample size.","PeriodicalId":269529,"journal":{"name":"Swiss Finance Institute Research Paper Series","volume":"129 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Swiss Finance Institute Research Paper Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2789585","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

We show how a method that has been applied to commercial real estate markets can be used to produce high frequency house price indexes for a city and for submarkets within a city. Our application of this method involves estimating a set of annual robust repeat sales regressions staggered by start date and then undertaking an annual-to-monthly (ATM) transformation with a generalized inverse estimator. Using transactions data for Louisville, Kentucky, we show that the method substantially reduces the volatility of high frequency indexes at the city and submarket levels. We demonstrate that both volatility and the benefits from using the ATM method are related to sample size.
数据稀缺的高频房价指数
我们展示了一种应用于商业房地产市场的方法如何用于为城市和城市内的子市场生成高频房价指数。我们对该方法的应用包括估计一组按开始日期错开的年度稳健重复销售回归,然后使用广义逆估计器进行年到月(ATM)转换。使用肯塔基州路易斯维尔的交易数据,我们表明该方法大大降低了城市和次级市场层面高频指数的波动性。我们证明了使用ATM方法的波动性和收益都与样本量有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信