Certainty Groups: A Practical Approach to Distinguish Confidence Levels in Neural Networks

Lukas Lodes, Alexander Schiendorfer
{"title":"Certainty Groups: A Practical Approach to Distinguish Confidence Levels in Neural Networks","authors":"Lukas Lodes, Alexander Schiendorfer","doi":"10.36001/phme.2022.v7i1.3331","DOIUrl":null,"url":null,"abstract":"Machine Learning (ML), in particular classification with deep neural nets, can be applied to a variety of industrial tasks. It can augment established methods for controlling manufacturing processes such as statistical process control (SPC) to detect non-obvious patterns in high-dimensional input data. However, due to the widespread issue of model miscalibration in neural networks, there is a need for estimating the predictive uncertainty of these models. Many established approaches for uncertainty estimation output scores that are difficult to put into actionable insight. We therefore introduce the concept of certainty groups which distinguish the predictions of a neural network into the normal group and the certainty group. The certainty group contains only predictions with a very high accuracy that can be set up to 100%. We present an approach to compute these certainty groups and demonstrate our approach on two datasets from a PHM setting.","PeriodicalId":422825,"journal":{"name":"PHM Society European Conference","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PHM Society European Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36001/phme.2022.v7i1.3331","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Machine Learning (ML), in particular classification with deep neural nets, can be applied to a variety of industrial tasks. It can augment established methods for controlling manufacturing processes such as statistical process control (SPC) to detect non-obvious patterns in high-dimensional input data. However, due to the widespread issue of model miscalibration in neural networks, there is a need for estimating the predictive uncertainty of these models. Many established approaches for uncertainty estimation output scores that are difficult to put into actionable insight. We therefore introduce the concept of certainty groups which distinguish the predictions of a neural network into the normal group and the certainty group. The certainty group contains only predictions with a very high accuracy that can be set up to 100%. We present an approach to compute these certainty groups and demonstrate our approach on two datasets from a PHM setting.
确定性组:区分神经网络置信水平的实用方法
机器学习(ML),特别是深度神经网络的分类,可以应用于各种工业任务。它可以增强现有的制造过程控制方法,如统计过程控制(SPC),以检测高维输入数据中的非明显模式。然而,由于神经网络中普遍存在模型误标定问题,因此需要对这些模型的预测不确定性进行估计。许多确定的不确定性估计方法输出的分数很难转化为可操作的洞察力。因此,我们引入确定性组的概念,将神经网络的预测分为正常组和确定性组。确定性组只包含具有非常高的准确度的预测,可以设置为100%。我们提出了一种计算这些确定性组的方法,并在PHM设置的两个数据集上演示了我们的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信