An Analysis of Adaptive Approach for Document Binarization

R. F. Malik, Saparudin, Intan Septyliana
{"title":"An Analysis of Adaptive Approach for Document Binarization","authors":"R. F. Malik, Saparudin, Intan Septyliana","doi":"10.18495/COMENGAPP.V2I2.21","DOIUrl":null,"url":null,"abstract":"Abstract Binarization is an initial step in document image analysis for differentiate text area from background. Determination of binarization technique is really important to retrieve all the text information especially from degraded document image. This paper explains about adaptive binarization using Gatos’s method. Gatos’s method is doing preprocessing, foreground estimation using Sauvola’s method, background estimation, upsampling, final thresholding and postprocessing. In this paper, Sauvola’s method is final thresholding from Wiener filter image result and source image, and count F-Measure from both of these binary image results. By using optimum constant value on k value, n local window, K sw and K sw1, Gatos’s method can produced binary image better than Sauvola’s method based on F-Measure value. Sauvola’s method produces average value F=84,62%, Sauvola’s method with Wiener filter produces average value F=99.06% and Gatos’s method produces average value F=99,43%. Keyword : Degraded Document Image, Adaptive Approcah for Binarization, Gatos’s  Method, Sauvola’s Method DOI: 10.18495/comengapp.22.185194","PeriodicalId":120500,"journal":{"name":"Computer Engineering and Applications","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Engineering and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18495/COMENGAPP.V2I2.21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Binarization is an initial step in document image analysis for differentiate text area from background. Determination of binarization technique is really important to retrieve all the text information especially from degraded document image. This paper explains about adaptive binarization using Gatos’s method. Gatos’s method is doing preprocessing, foreground estimation using Sauvola’s method, background estimation, upsampling, final thresholding and postprocessing. In this paper, Sauvola’s method is final thresholding from Wiener filter image result and source image, and count F-Measure from both of these binary image results. By using optimum constant value on k value, n local window, K sw and K sw1, Gatos’s method can produced binary image better than Sauvola’s method based on F-Measure value. Sauvola’s method produces average value F=84,62%, Sauvola’s method with Wiener filter produces average value F=99.06% and Gatos’s method produces average value F=99,43%. Keyword : Degraded Document Image, Adaptive Approcah for Binarization, Gatos’s  Method, Sauvola’s Method DOI: 10.18495/comengapp.22.185194
一种自适应文档二值化方法分析
摘要二值化是文档图像分析中区分文本区域和背景的第一步。二值化技术的确定对于检索所有文本信息,特别是从退化的文档图像中检索文本信息至关重要。本文介绍了用Gatos方法进行自适应二值化的方法。Gatos的方法是做预处理,使用Sauvola的方法进行前景估计,背景估计,上采样,最终阈值和后处理。在本文中,Sauvola的方法是对维纳滤波图像结果和源图像进行最终阈值分割,并对这两个二值图像结果进行F-Measure计数。Gatos方法利用k值、n个局部窗口、ksw和ksw1的最优常数,比Sauvola基于F-Measure值的方法能更好地生成二值图像。Sauvola的方法得到的平均值F=84,62%,带Wiener滤波的方法得到的平均值F=99.06%, Gatos的方法得到的平均值F=99,43%。关键词:退化文档图像,自适应二值化方法,Gatos方法,Sauvola方法
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信