Options Evaluator With an Artificial Intelligence-Based Volatility Model

Árpád Rigó, B. Tusor
{"title":"Options Evaluator With an Artificial Intelligence-Based Volatility Model","authors":"Árpád Rigó, B. Tusor","doi":"10.1109/SACI58269.2023.10158633","DOIUrl":null,"url":null,"abstract":"The subject of this paper is an options modeling system, which aims to provide the most accurate profit forecast possible for options portfolios in a comprehensible form, as software on the market will misrepresent this in the absence of accurate implied volatility data, which can put trading success at risk. The software determines future implied volatility from 1-year historical options on VXX stock with 6 samples per trading day using statistics and a deep neural network (Long short-term memory LSTM). Using this statistical approach and the trained volatility model, the system calculates the profit/loss curve, thus providing a more accurate picture of the possible future outcomes of a given portfolio.","PeriodicalId":339156,"journal":{"name":"2023 IEEE 17th International Symposium on Applied Computational Intelligence and Informatics (SACI)","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 17th International Symposium on Applied Computational Intelligence and Informatics (SACI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SACI58269.2023.10158633","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The subject of this paper is an options modeling system, which aims to provide the most accurate profit forecast possible for options portfolios in a comprehensible form, as software on the market will misrepresent this in the absence of accurate implied volatility data, which can put trading success at risk. The software determines future implied volatility from 1-year historical options on VXX stock with 6 samples per trading day using statistics and a deep neural network (Long short-term memory LSTM). Using this statistical approach and the trained volatility model, the system calculates the profit/loss curve, thus providing a more accurate picture of the possible future outcomes of a given portfolio.
基于人工智能波动率模型的期权评估器
本文的主题是一个期权建模系统,旨在以一种可理解的形式为期权投资组合提供最准确的利润预测,因为市场上的软件在缺乏准确的隐含波动率数据的情况下会歪曲这一点,这可能会使交易成功面临风险。该软件利用统计数据和深度神经网络(长短期记忆LSTM),从VXX股票的1年历史期权中确定未来隐含波动率,每个交易日有6个样本。利用这种统计方法和经过训练的波动率模型,系统可以计算出盈亏曲线,从而更准确地描述给定投资组合的未来可能结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信