Kalina Borkiewicz, Viraj Shah, J. Naiman, Chuanyue Shen, Stuart Levy, Jeff Carpenter
{"title":"CloudFindr: A Deep Learning Cloud Artifact Masker for Satellite DEM Data","authors":"Kalina Borkiewicz, Viraj Shah, J. Naiman, Chuanyue Shen, Stuart Levy, Jeff Carpenter","doi":"10.1109/VIS49827.2021.9623327","DOIUrl":null,"url":null,"abstract":"Artifact removal is an integral component of cinematic scientific visualization, and is especially challenging with big datasets in which artifacts are difficult to define. In this paper, we describe a method for creating cloud artifact masks which can be used to remove artifacts from satellite imagery using a combination of traditional image processing together with deep learning based on U-Net. Compared to previous methods, our approach does not require multi-channel spectral imagery but performs successfully on single-channel Digital Elevation Models (DEMs). DEMs are a representation of the topography of the Earth and have a variety applications including planetary science, geology, flood modeling, and city planning.","PeriodicalId":387572,"journal":{"name":"2021 IEEE Visualization Conference (VIS)","volume":"268 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Visualization Conference (VIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VIS49827.2021.9623327","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Artifact removal is an integral component of cinematic scientific visualization, and is especially challenging with big datasets in which artifacts are difficult to define. In this paper, we describe a method for creating cloud artifact masks which can be used to remove artifacts from satellite imagery using a combination of traditional image processing together with deep learning based on U-Net. Compared to previous methods, our approach does not require multi-channel spectral imagery but performs successfully on single-channel Digital Elevation Models (DEMs). DEMs are a representation of the topography of the Earth and have a variety applications including planetary science, geology, flood modeling, and city planning.