Group invariance methods in nonlinear filtering of diffusion processes

J. Baras
{"title":"Group invariance methods in nonlinear filtering of diffusion processes","authors":"J. Baras","doi":"10.1109/CDC.1980.272022","DOIUrl":null,"url":null,"abstract":"Given two \"nonlinear filtering problems\" described by the processes dx (t)i = fi (xi(t)) dt+gi (xi(t))dwi(t) i=1,2, dx (t)i = hi (xi(t)) dt+dvi(t), we define a notion of strong equivalence relating the solutions to the corresponding Mortensen-Zakai equations dui (t,x) = Lui i(t,x)dt + Li iui (t,x)dyt i, i=1,2, which allows solution of one problem to be obtained easily from solutions of the other. We give a geometric picture of this equivalence as a group of local transformations acting on manifolds of solutions. We then show that by knowing the full invariance group of the time invariant equations dui (t,x) = Lui i (t,x)dt, i=1,2, we can analyze strong equivalence for the filtering problems. In particular if the two time invariant parabolic operators are in the same orbit of the invariance group we can show strong equivalence for the filtering problems. As a result filtering problems are separated into equivalent classes which correspond to orbits of invariance groups of parabolic operators. As specific example we treat V. Bene¿'s case establishing from this point of view the necessity of the Riccati equation.","PeriodicalId":332964,"journal":{"name":"1980 19th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes","volume":"132 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1980-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"1980 19th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.1980.272022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

Given two "nonlinear filtering problems" described by the processes dx (t)i = fi (xi(t)) dt+gi (xi(t))dwi(t) i=1,2, dx (t)i = hi (xi(t)) dt+dvi(t), we define a notion of strong equivalence relating the solutions to the corresponding Mortensen-Zakai equations dui (t,x) = Lui i(t,x)dt + Li iui (t,x)dyt i, i=1,2, which allows solution of one problem to be obtained easily from solutions of the other. We give a geometric picture of this equivalence as a group of local transformations acting on manifolds of solutions. We then show that by knowing the full invariance group of the time invariant equations dui (t,x) = Lui i (t,x)dt, i=1,2, we can analyze strong equivalence for the filtering problems. In particular if the two time invariant parabolic operators are in the same orbit of the invariance group we can show strong equivalence for the filtering problems. As a result filtering problems are separated into equivalent classes which correspond to orbits of invariance groups of parabolic operators. As specific example we treat V. Bene¿'s case establishing from this point of view the necessity of the Riccati equation.
扩散过程非线性滤波中的群不变性方法
给定由过程dx (t)i = fi (xi(t)) dt+gi (xi(t))dwi(t) i=1,2, dx (t)i = hi (xi(t)) dt+dvi(t)描述的两个“非线性滤波问题”,我们定义了相应Mortensen-Zakai方程dui (t,x) = Lui (t,x)dt + Li iui (t,x)dyt i, i=1,2的解的强等价概念,使得一个问题的解可以很容易地从另一个问题的解中得到。我们给出了这个等价的几何图像,它是作用于解的流形上的一组局部变换。然后我们证明了通过知道时不变方程dui (t,x) = Lui i (t,x)dt, i=1,2的全不变群,我们可以分析滤波问题的强等价性。特别是当两个时不变抛物算子在不变群的同一轨道上时,我们可以证明滤波问题的强等价性。结果将滤波问题划分为等价类,这些等价类对应于抛物算子不变性群的轨道。作为具体的例子,我们从这一观点出发,讨论了利卡第方程的必要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信