ASAClu: Selecting Diverse and Relevant Clusters

Joao Luis Baptista de Almeida, T. Sakata, Katti Faceli
{"title":"ASAClu: Selecting Diverse and Relevant Clusters","authors":"Joao Luis Baptista de Almeida, T. Sakata, Katti Faceli","doi":"10.1109/BRACIS.2016.091","DOIUrl":null,"url":null,"abstract":"No clustering algorithm is guaranteed to find actualgroups in any dataset. To deal with this problem, one can applyvarious clustering algorithms, generating a set of partitions andexplore them to find the most appropriated ones. The number ofpartitions and its component clusters may be too large, making itdifficult to the specialist analyze the final result. In this paper, weintroduce a new selection strategy namedASAClu, which is aimedat selecting a reduced set of clusters from a given collection ofpartitions generated by different clustering algorithms.","PeriodicalId":183149,"journal":{"name":"2016 5th Brazilian Conference on Intelligent Systems (BRACIS)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 5th Brazilian Conference on Intelligent Systems (BRACIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BRACIS.2016.091","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

No clustering algorithm is guaranteed to find actualgroups in any dataset. To deal with this problem, one can applyvarious clustering algorithms, generating a set of partitions andexplore them to find the most appropriated ones. The number ofpartitions and its component clusters may be too large, making itdifficult to the specialist analyze the final result. In this paper, weintroduce a new selection strategy namedASAClu, which is aimedat selecting a reduced set of clusters from a given collection ofpartitions generated by different clustering algorithms.
ASAClu:选择多样化和相关的集群
没有任何聚类算法能保证在任何数据集中找到实际的组。要处理这个问题,可以应用各种聚类算法,生成一组分区,并探索它们以找到最合适的分区。分区及其组成簇的数量可能太大,使专家难以分析最终结果。在本文中,我们引入了一种新的选择策略asaclu,它旨在从给定的由不同聚类算法生成的分区集合中选择一个约简的聚类集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信