Similarity search on metric data of outsourced lung images

M. Blessa, Binolin Pepsi, K Mala
{"title":"Similarity search on metric data of outsourced lung images","authors":"M. Blessa, Binolin Pepsi, K Mala","doi":"10.1109/ICGHPC.2013.6533912","DOIUrl":null,"url":null,"abstract":"The setting in which similarity querying of metric data is outsourced to a service provider. Users query the server for the most similar data objects and data is revealed only to trusted users and not to anyone else. The need for privacy may be due to the data being sensitive (eg. in medicine), valuable (eg. in astronomy) or otherwise confidential. In this work, image retrieval on metric data of outsourced lung images using parallelism from various sources like hospitals, scan centers and public database available in internet are handled. The proposed similarity search for content based image retrieval involves dynamic similarity querying on metric data from segmented and extracted texture features database. With real data, the technique is capable of offering privacy while enabling efficient and accurate processing of similarity queries.","PeriodicalId":119498,"journal":{"name":"2013 International Conference on Green High Performance Computing (ICGHPC)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Green High Performance Computing (ICGHPC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICGHPC.2013.6533912","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The setting in which similarity querying of metric data is outsourced to a service provider. Users query the server for the most similar data objects and data is revealed only to trusted users and not to anyone else. The need for privacy may be due to the data being sensitive (eg. in medicine), valuable (eg. in astronomy) or otherwise confidential. In this work, image retrieval on metric data of outsourced lung images using parallelism from various sources like hospitals, scan centers and public database available in internet are handled. The proposed similarity search for content based image retrieval involves dynamic similarity querying on metric data from segmented and extracted texture features database. With real data, the technique is capable of offering privacy while enabling efficient and accurate processing of similarity queries.
外包肺图像度量数据的相似性搜索
度量数据的相似性查询外包给服务提供者的设置。用户向服务器查询最相似的数据对象,数据只显示给受信任的用户,而不显示给其他任何人。对隐私的需要可能是由于数据很敏感(例如:在医学上是有价值的。(天文学)或其他机密的。本研究利用医院、扫描中心和互联网公共数据库的并行性,对外协肺图像的度量数据进行图像检索。本文提出的基于内容的图像检索相似度搜索涉及对纹理特征数据库中分割提取的度量数据进行动态相似度查询。对于真实数据,该技术能够在提供隐私的同时实现高效和准确的相似性查询处理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信