CO2 Prediction of the Undrilled Prospects of the Arthit Field via Geological-Informed Machine Learning

Nutchapol Dendumrongsup, Kittichote Veeranuntawat, Kasinee Suyacom, Chayapod Beokhaimook, Apsorn Panthong, Auranan Ngamnithiporn, Pitchaya Hotarapavanon, A. Ruangsirikulchai, J. Kaewtapan, Chittchon Chittpayak, Nuntanut Laoniyomthai
{"title":"CO2 Prediction of the Undrilled Prospects of the Arthit Field via Geological-Informed Machine Learning","authors":"Nutchapol Dendumrongsup, Kittichote Veeranuntawat, Kasinee Suyacom, Chayapod Beokhaimook, Apsorn Panthong, Auranan Ngamnithiporn, Pitchaya Hotarapavanon, A. Ruangsirikulchai, J. Kaewtapan, Chittchon Chittpayak, Nuntanut Laoniyomthai","doi":"10.2523/iptc-23028-ms","DOIUrl":null,"url":null,"abstract":"\n High Carbon dioxide (CO2) content presents a serious challenge in the development of Arthit Field. Accurate resource estimation, especially in the deep reservoir sections (Lower Miocene - Oligocene), depends on the accuracy of CO2 prediction. Formulated as a manual clustering approximation, conventional CO2 prediction requires intensive labor and fails to re-calibrate the model once the latest information is acquired. This paper introduces the application of machine learning concepts to the prediction of CO2. The proposed CO2 prediction methodology leverages machine learning techniques to enhance the understanding of a known field with existing CO2 concerns. Compared to the conventional manual clustering method, the machine learning model improves accuracy and reduces time and cost in the process of CO2 prediction and, in turn, resource estimation. Although our methodology is demonstrated specifically for CO2 in Arthit Field, it is equally applicable to other parameters and fields.","PeriodicalId":185347,"journal":{"name":"Day 3 Fri, March 03, 2023","volume":"217 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 3 Fri, March 03, 2023","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2523/iptc-23028-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

High Carbon dioxide (CO2) content presents a serious challenge in the development of Arthit Field. Accurate resource estimation, especially in the deep reservoir sections (Lower Miocene - Oligocene), depends on the accuracy of CO2 prediction. Formulated as a manual clustering approximation, conventional CO2 prediction requires intensive labor and fails to re-calibrate the model once the latest information is acquired. This paper introduces the application of machine learning concepts to the prediction of CO2. The proposed CO2 prediction methodology leverages machine learning techniques to enhance the understanding of a known field with existing CO2 concerns. Compared to the conventional manual clustering method, the machine learning model improves accuracy and reduces time and cost in the process of CO2 prediction and, in turn, resource estimation. Although our methodology is demonstrated specifically for CO2 in Arthit Field, it is equally applicable to other parameters and fields.
基于地质信息机器学习的arit油田未钻井远景CO2预测
高二氧化碳(CO2)含量是阿尔特油田开发面临的严峻挑战。准确的资源估计,特别是在深部储层段(下中新世-渐新世),取决于CO2预测的准确性。作为人工聚类近似,传统的CO2预测需要密集的劳动,并且在获得最新信息后无法重新校准模型。本文介绍了机器学习概念在CO2预测中的应用。提出的二氧化碳预测方法利用机器学习技术来增强对现有二氧化碳问题已知领域的理解。与传统的人工聚类方法相比,机器学习模型提高了CO2预测过程的准确性,减少了时间和成本,从而减少了资源估计。虽然我们的方法是专门针对arit领域的CO2进行演示的,但它同样适用于其他参数和领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信