High Resolution Satellite Image Processing Using Hadoop Framework

Roshan Rajak, Deepu Raveendran, Maruthi Chandrasekhar Bh, S. Medasani
{"title":"High Resolution Satellite Image Processing Using Hadoop Framework","authors":"Roshan Rajak, Deepu Raveendran, Maruthi Chandrasekhar Bh, S. Medasani","doi":"10.1109/CCEM.2015.16","DOIUrl":null,"url":null,"abstract":"Complex image processing algorithms that require higher computational power with large scale inputs can be processed efficiently using the parallel and distributed processing of Hadoop MapReduce Framework. Hadoop MapReduce is a scalable model which is capable of processing petabytes (1015 order) of data with improved fault tolerance and data parallelism. In this paper we present a MapReduce framework for performing parallel remote sensing satellite data processing using Hadoop and storing the output in HBase. The speedup and performance show that by utilizing Hadoop, we can distribute our workload across different clusters to take advantage of combined processing power on commodity hardware.","PeriodicalId":339923,"journal":{"name":"2015 IEEE International Conference on Cloud Computing in Emerging Markets (CCEM)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Cloud Computing in Emerging Markets (CCEM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCEM.2015.16","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

Complex image processing algorithms that require higher computational power with large scale inputs can be processed efficiently using the parallel and distributed processing of Hadoop MapReduce Framework. Hadoop MapReduce is a scalable model which is capable of processing petabytes (1015 order) of data with improved fault tolerance and data parallelism. In this paper we present a MapReduce framework for performing parallel remote sensing satellite data processing using Hadoop and storing the output in HBase. The speedup and performance show that by utilizing Hadoop, we can distribute our workload across different clusters to take advantage of combined processing power on commodity hardware.
基于Hadoop框架的高分辨率卫星图像处理
使用Hadoop MapReduce框架的并行和分布式处理,可以高效地处理需要较高计算能力和大规模输入的复杂图像处理算法。Hadoop MapReduce是一个可扩展的模型,能够处理pb(1015个数量级)的数据,并具有改进的容错性和数据并行性。本文提出了一个MapReduce框架,利用Hadoop对遥感卫星数据进行并行处理,并将处理结果存储在HBase中。加速和性能表明,通过使用Hadoop,我们可以将工作负载分布到不同的集群上,以利用普通硬件上的综合处理能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信